最新生成模型的可信度景观:综述与展望

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mingyuan Fan, Chengyu Wang, Cen Chen, Yang Liu, Jun Huang
{"title":"最新生成模型的可信度景观:综述与展望","authors":"Mingyuan Fan, Chengyu Wang, Cen Chen, Yang Liu, Jun Huang","doi":"10.1007/s11263-025-02375-w","DOIUrl":null,"url":null,"abstract":"<p>Diffusion models and large language models have emerged as leading-edge generative models, revolutionizing various aspects of human life. However, their practical implementation has also exposed inherent risks, bringing to light their potential downsides and sparking concerns about their trustworthiness. Despite the wealth of literature on this subject, a comprehensive survey that specifically delves into the intersection of large-scale generative models and their trustworthiness remains largely absent. To bridge this gap, this paper investigates both long-standing and emerging threats associated with these models across four fundamental dimensions: 1) privacy, 2) security, 3) fairness, and 4) responsibility. Based on our investigation results, we develop an extensive survey that outlines the trustworthiness of large generative models. Following that, we provide practical recommendations and identify promising research directions for generative AI, ultimately promoting the trustworthiness of these models and benefiting society as a whole.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"63 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Trustworthiness Landscape of State-of-the-art Generative Models: A Survey and Outlook\",\"authors\":\"Mingyuan Fan, Chengyu Wang, Cen Chen, Yang Liu, Jun Huang\",\"doi\":\"10.1007/s11263-025-02375-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diffusion models and large language models have emerged as leading-edge generative models, revolutionizing various aspects of human life. However, their practical implementation has also exposed inherent risks, bringing to light their potential downsides and sparking concerns about their trustworthiness. Despite the wealth of literature on this subject, a comprehensive survey that specifically delves into the intersection of large-scale generative models and their trustworthiness remains largely absent. To bridge this gap, this paper investigates both long-standing and emerging threats associated with these models across four fundamental dimensions: 1) privacy, 2) security, 3) fairness, and 4) responsibility. Based on our investigation results, we develop an extensive survey that outlines the trustworthiness of large generative models. Following that, we provide practical recommendations and identify promising research directions for generative AI, ultimately promoting the trustworthiness of these models and benefiting society as a whole.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02375-w\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02375-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

扩散模型和大型语言模型已经成为领先的生成模型,彻底改变了人类生活的各个方面。然而,它们的实际实施也暴露了内在的风险,暴露了它们潜在的缺点,并引发了对它们可信度的担忧。尽管关于这一主题的文献丰富,但专门研究大规模生成模型及其可信度交叉的全面调查在很大程度上仍然缺乏。为了弥补这一差距,本文从四个基本维度调查了与这些模型相关的长期和新出现的威胁:1)隐私,2)安全,3)公平,4)责任。基于我们的调查结果,我们开展了一项广泛的调查,概述了大型生成模型的可信度。接下来,我们为生成式人工智能提供实用建议,并确定有前景的研究方向,最终提高这些模型的可信度,造福整个社会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Trustworthiness Landscape of State-of-the-art Generative Models: A Survey and Outlook

Diffusion models and large language models have emerged as leading-edge generative models, revolutionizing various aspects of human life. However, their practical implementation has also exposed inherent risks, bringing to light their potential downsides and sparking concerns about their trustworthiness. Despite the wealth of literature on this subject, a comprehensive survey that specifically delves into the intersection of large-scale generative models and their trustworthiness remains largely absent. To bridge this gap, this paper investigates both long-standing and emerging threats associated with these models across four fundamental dimensions: 1) privacy, 2) security, 3) fairness, and 4) responsibility. Based on our investigation results, we develop an extensive survey that outlines the trustworthiness of large generative models. Following that, we provide practical recommendations and identify promising research directions for generative AI, ultimately promoting the trustworthiness of these models and benefiting society as a whole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信