热传导在带激波的旋转黑洞周围相对论性热吸积流中的作用

IF 5.9 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Monu Singh and Santabrata Das
{"title":"热传导在带激波的旋转黑洞周围相对论性热吸积流中的作用","authors":"Monu Singh and Santabrata Das","doi":"10.1088/1475-7516/2025/02/068","DOIUrl":null,"url":null,"abstract":"We investigate the properties of low angular momentum, relativistic, viscous, advective accretion flows around rotating black holes that include shock waves in the presence of thermal conduction. We self-consistently solve the governing fluid equations to obtain the global transonic accretion solutions for a set of model parameters, namely energy (ℰ), angular momentum (λ), viscosity (α), conduction parameter (Φs) and cooling parameter (fc). We observe that depending on the model parameters, accretion flow experiences centrifugally supported shock transition and the present study, for the first time, focuses on examining the shock properties, such as shock radius (rs), compression ratio (R) and shock strength (Ψ) regulated by the dissipation parameters (Φs, fc). We show that shock-induced global accretion solutions persist for wide range of model parameters and identify the boundary of the parameter space in energy-angular momentum plane that admits standing shocks for different dissipation parameters (Φs, fc). Finally, we compute the critical conduction parameter (Φscri), beyond which shock ceases to exist. We find that Φscri directly depends on the black hole spin (ak) with Φscri ∼ 0.029 and ∼ 0.04 for weakly (ak → 0) and rapidly (ak → 1) rotating black hole. Furthermore, we observe that Φscri decreases with increasing viscosity (α), and shocked accretion solutions continue to exist for α ≲ 0.065 (ak → 0) and ≲ 0.104 (ak → 1), respectively.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"3 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of thermal conduction in relativistic hot accretion flow around rotating black hole with shock\",\"authors\":\"Monu Singh and Santabrata Das\",\"doi\":\"10.1088/1475-7516/2025/02/068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the properties of low angular momentum, relativistic, viscous, advective accretion flows around rotating black holes that include shock waves in the presence of thermal conduction. We self-consistently solve the governing fluid equations to obtain the global transonic accretion solutions for a set of model parameters, namely energy (ℰ), angular momentum (λ), viscosity (α), conduction parameter (Φs) and cooling parameter (fc). We observe that depending on the model parameters, accretion flow experiences centrifugally supported shock transition and the present study, for the first time, focuses on examining the shock properties, such as shock radius (rs), compression ratio (R) and shock strength (Ψ) regulated by the dissipation parameters (Φs, fc). We show that shock-induced global accretion solutions persist for wide range of model parameters and identify the boundary of the parameter space in energy-angular momentum plane that admits standing shocks for different dissipation parameters (Φs, fc). Finally, we compute the critical conduction parameter (Φscri), beyond which shock ceases to exist. We find that Φscri directly depends on the black hole spin (ak) with Φscri ∼ 0.029 and ∼ 0.04 for weakly (ak → 0) and rapidly (ak → 1) rotating black hole. Furthermore, we observe that Φscri decreases with increasing viscosity (α), and shocked accretion solutions continue to exist for α ≲ 0.065 (ak → 0) and ≲ 0.104 (ak → 1), respectively.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/02/068\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/02/068","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了低角动量、相对论性、粘性、围绕旋转黑洞的平流吸积流的性质,其中包括热传导存在下的激波。我们对控制流体方程进行自洽求解,得到了一组模型参数(能量(e)、角动量(λ)、粘度(α)、传导参数(Φs)和冷却参数(fc))的全局跨声速吸积解。我们观察到,根据模型参数的不同,吸积流经历了离心支持的激波过渡,本研究首次重点研究了由耗散参数(Φs, fc)调节的激波半径(rs)、压缩比(R)和激波强度(Ψ)等激波特性。我们证明了冲击引起的整体吸积解在大范围的模型参数下持续存在,并确定了能量角动量平面上的参数空间边界,该边界允许不同耗散参数的静冲击(Φs, fc)。最后,我们计算临界传导参数(Φscri),超过该参数,激波就不存在了。我们发现Φscri直接依赖于黑洞自旋(ak),对于弱(ak→0)和快速(ak→1)旋转的黑洞分别为Φscri ~ 0.029和~ 0.04。此外,我们观察到Φscri随粘度(α)的增加而减小,并且在α > 0.065 (ak→0)和> 0.104 (ak→1)时激波吸积解继续存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of thermal conduction in relativistic hot accretion flow around rotating black hole with shock
We investigate the properties of low angular momentum, relativistic, viscous, advective accretion flows around rotating black holes that include shock waves in the presence of thermal conduction. We self-consistently solve the governing fluid equations to obtain the global transonic accretion solutions for a set of model parameters, namely energy (ℰ), angular momentum (λ), viscosity (α), conduction parameter (Φs) and cooling parameter (fc). We observe that depending on the model parameters, accretion flow experiences centrifugally supported shock transition and the present study, for the first time, focuses on examining the shock properties, such as shock radius (rs), compression ratio (R) and shock strength (Ψ) regulated by the dissipation parameters (Φs, fc). We show that shock-induced global accretion solutions persist for wide range of model parameters and identify the boundary of the parameter space in energy-angular momentum plane that admits standing shocks for different dissipation parameters (Φs, fc). Finally, we compute the critical conduction parameter (Φscri), beyond which shock ceases to exist. We find that Φscri directly depends on the black hole spin (ak) with Φscri ∼ 0.029 and ∼ 0.04 for weakly (ak → 0) and rapidly (ak → 1) rotating black hole. Furthermore, we observe that Φscri decreases with increasing viscosity (α), and shocked accretion solutions continue to exist for α ≲ 0.065 (ak → 0) and ≲ 0.104 (ak → 1), respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信