可变随访时间研究的样本量确定。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Guogen Shan, Yahui Zhang, Xinlin Lu, Yulin Li, Minggen Lu, Zhigang Li
{"title":"可变随访时间研究的样本量确定。","authors":"Guogen Shan, Yahui Zhang, Xinlin Lu, Yulin Li, Minggen Lu, Zhigang Li","doi":"10.1080/10543406.2025.2469879","DOIUrl":null,"url":null,"abstract":"<p><p>For a study to detect the outcome change at the follow-up visit from baseline, the pre-test and post-test design is commonly used to assess the treatment-control difference. Several existing methods were developed for sample size calculation including the subtraction method, analysis of covariance (ANCOVA), and linear mixed model. The first two methods can be used when the follow-up time is the same as scheduled. Although the linear mixed model can analyze the repeated measures by including the actual visit time to account for the variability of the follow-up time, it often assumes a constant treatment-control difference at any follow-up time which may not be correct in practice. We propose to develop a new statistical model to compare the treatment-control difference at the planned follow-up time while controlling for the follow-up time variation. The spline functions are used to estimate the trajectories of the treatment arm and the control arm. We compared the performance of these methods with regards to type I error rate, statistical power, and sample size under various conditions. These four methods all control for the type I error rate. The new method and the ANCOVA method are often more powerful than the other two methods, and they have similar statistical power when a linear disease progression is satisfied. For a study with non-linear disease progression, the new method can be more powerful than the ANCOVA method. We used data from a completed Alzheimer's disease trial to illustrate the application of the proposed method.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-16"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample size determination for a study with variable follow-up time.\",\"authors\":\"Guogen Shan, Yahui Zhang, Xinlin Lu, Yulin Li, Minggen Lu, Zhigang Li\",\"doi\":\"10.1080/10543406.2025.2469879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For a study to detect the outcome change at the follow-up visit from baseline, the pre-test and post-test design is commonly used to assess the treatment-control difference. Several existing methods were developed for sample size calculation including the subtraction method, analysis of covariance (ANCOVA), and linear mixed model. The first two methods can be used when the follow-up time is the same as scheduled. Although the linear mixed model can analyze the repeated measures by including the actual visit time to account for the variability of the follow-up time, it often assumes a constant treatment-control difference at any follow-up time which may not be correct in practice. We propose to develop a new statistical model to compare the treatment-control difference at the planned follow-up time while controlling for the follow-up time variation. The spline functions are used to estimate the trajectories of the treatment arm and the control arm. We compared the performance of these methods with regards to type I error rate, statistical power, and sample size under various conditions. These four methods all control for the type I error rate. The new method and the ANCOVA method are often more powerful than the other two methods, and they have similar statistical power when a linear disease progression is satisfied. For a study with non-linear disease progression, the new method can be more powerful than the ANCOVA method. We used data from a completed Alzheimer's disease trial to illustrate the application of the proposed method.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2025.2469879\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2469879","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

对于从基线开始检测随访结果变化的研究,通常采用前测和后测设计来评估治疗-控制差异。现有的几种样本量计算方法包括减法、协方差分析(ANCOVA)和线性混合模型。当后续时间与计划时间一致时,可以使用前两种方法。虽然线性混合模型可以通过纳入实际就诊时间来分析重复测量,以解释随访时间的可变性,但它通常假设在任何随访时间都有恒定的治疗-控制差异,这在实践中可能不正确。我们建议建立一个新的统计模型,在控制随访时间变化的情况下,比较计划随访时间的治疗-控制差异。样条函数用于估计处理臂和控制臂的轨迹。我们比较了这些方法在不同条件下的I型错误率、统计功率和样本量方面的性能。这四种方法都控制第一类错误率。新方法和ANCOVA方法往往比其他两种方法更有效,当满足线性疾病进展时,它们具有相似的统计能力。对于非线性疾病进展的研究,新方法可能比ANCOVA方法更有效。我们使用了一项已完成的阿尔茨海默病试验的数据来说明所提出方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sample size determination for a study with variable follow-up time.

For a study to detect the outcome change at the follow-up visit from baseline, the pre-test and post-test design is commonly used to assess the treatment-control difference. Several existing methods were developed for sample size calculation including the subtraction method, analysis of covariance (ANCOVA), and linear mixed model. The first two methods can be used when the follow-up time is the same as scheduled. Although the linear mixed model can analyze the repeated measures by including the actual visit time to account for the variability of the follow-up time, it often assumes a constant treatment-control difference at any follow-up time which may not be correct in practice. We propose to develop a new statistical model to compare the treatment-control difference at the planned follow-up time while controlling for the follow-up time variation. The spline functions are used to estimate the trajectories of the treatment arm and the control arm. We compared the performance of these methods with regards to type I error rate, statistical power, and sample size under various conditions. These four methods all control for the type I error rate. The new method and the ANCOVA method are often more powerful than the other two methods, and they have similar statistical power when a linear disease progression is satisfied. For a study with non-linear disease progression, the new method can be more powerful than the ANCOVA method. We used data from a completed Alzheimer's disease trial to illustrate the application of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信