复方口服避孕药改变外周血细胞外核苷酶和腺苷脱氨酶活性。

IF 3 4区 医学 Q2 NEUROSCIENCES
Bruna Pache Moreschi, Romário da Silva Portilho, Andreza Negreli Santos, Igor Leal Brito, Jeandre Augusto Otsubo Jaques
{"title":"复方口服避孕药改变外周血细胞外核苷酶和腺苷脱氨酶活性。","authors":"Bruna Pache Moreschi, Romário da Silva Portilho, Andreza Negreli Santos, Igor Leal Brito, Jeandre Augusto Otsubo Jaques","doi":"10.1007/s11302-025-10075-w","DOIUrl":null,"url":null,"abstract":"<p><p>Hormonal contraceptives, one of the most widely used contraceptive methods, are associated with the development of thromboembolism. Purinergic mediators such as soluble agonists, ectonucleotidases, and receptors play a prominent role in regulating hemostasis. This study aimed to evaluate E-NTPDase, E-5'-NT, and E-ADA activities in lymphocytes and platelets from women using combined oral contraceptives. Participants used third-generation (3G) oral contraceptives, such as drospirenone or cyproterone acetate, or fourth-generation (4G) oral contraceptives, such as gestodene or desogestrel, both combined with ethinylestradiol. The findings indicated decreased adenosine (ADO) deamination in lymphocytes (78%, p < 0.001) and decreased AMP hydrolysis (69%, p < 0.01) and ADO deamination (66%, p < 0.001) in platelets from women using 3G contraceptives compared with the control. Furthermore, the results showed decreased ADO deamination (66%, p < 0.05) in lymphocytes and decreased ATP hydrolysis (52%, p < 0.05) and decreased ADO deamination (57%, p < 0.001) in platelets from women using 4G contraceptives compared with the control. The observed patterns of AMP hydrolysis are compatible with an ADO-poor vascular microenvironment. Likewise, the decrease in E-ADA activity may be associated with lower concentrations of ADO in the vascular microenvironment, which has antiplatelet and anti-inflammatory effects. Overall, the findings demonstrated that hormonal contraceptives alter the activity of purinergic ectoenzymes, which might be related to their effects on hemostasis and a predisposition to thromboembolic events.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined oral contraceptives alter ectonucleotidase and adenosine deaminase activities in peripheral blood cells.\",\"authors\":\"Bruna Pache Moreschi, Romário da Silva Portilho, Andreza Negreli Santos, Igor Leal Brito, Jeandre Augusto Otsubo Jaques\",\"doi\":\"10.1007/s11302-025-10075-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hormonal contraceptives, one of the most widely used contraceptive methods, are associated with the development of thromboembolism. Purinergic mediators such as soluble agonists, ectonucleotidases, and receptors play a prominent role in regulating hemostasis. This study aimed to evaluate E-NTPDase, E-5'-NT, and E-ADA activities in lymphocytes and platelets from women using combined oral contraceptives. Participants used third-generation (3G) oral contraceptives, such as drospirenone or cyproterone acetate, or fourth-generation (4G) oral contraceptives, such as gestodene or desogestrel, both combined with ethinylestradiol. The findings indicated decreased adenosine (ADO) deamination in lymphocytes (78%, p < 0.001) and decreased AMP hydrolysis (69%, p < 0.01) and ADO deamination (66%, p < 0.001) in platelets from women using 3G contraceptives compared with the control. Furthermore, the results showed decreased ADO deamination (66%, p < 0.05) in lymphocytes and decreased ATP hydrolysis (52%, p < 0.05) and decreased ADO deamination (57%, p < 0.001) in platelets from women using 4G contraceptives compared with the control. The observed patterns of AMP hydrolysis are compatible with an ADO-poor vascular microenvironment. Likewise, the decrease in E-ADA activity may be associated with lower concentrations of ADO in the vascular microenvironment, which has antiplatelet and anti-inflammatory effects. Overall, the findings demonstrated that hormonal contraceptives alter the activity of purinergic ectoenzymes, which might be related to their effects on hemostasis and a predisposition to thromboembolic events.</p>\",\"PeriodicalId\":20952,\"journal\":{\"name\":\"Purinergic Signalling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Purinergic Signalling\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11302-025-10075-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10075-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

激素避孕药是最广泛使用的避孕方法之一,与血栓栓塞的发生有关。嘌呤能介质如可溶性激动剂、外核苷酶和受体在调节止血中起着重要作用。本研究旨在评估使用联合口服避孕药的妇女淋巴细胞和血小板中e - ntpase、E-5′-NT和E-ADA的活性。参与者使用第三代(3G)口服避孕药,如屈螺酮或醋酸环丙孕酮,或第四代(4G)口服避孕药,如孕酮或地炔雌酮,两者均与炔雌醇联合使用。结果显示淋巴细胞腺苷(ADO)脱胺减少(78%,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined oral contraceptives alter ectonucleotidase and adenosine deaminase activities in peripheral blood cells.

Hormonal contraceptives, one of the most widely used contraceptive methods, are associated with the development of thromboembolism. Purinergic mediators such as soluble agonists, ectonucleotidases, and receptors play a prominent role in regulating hemostasis. This study aimed to evaluate E-NTPDase, E-5'-NT, and E-ADA activities in lymphocytes and platelets from women using combined oral contraceptives. Participants used third-generation (3G) oral contraceptives, such as drospirenone or cyproterone acetate, or fourth-generation (4G) oral contraceptives, such as gestodene or desogestrel, both combined with ethinylestradiol. The findings indicated decreased adenosine (ADO) deamination in lymphocytes (78%, p < 0.001) and decreased AMP hydrolysis (69%, p < 0.01) and ADO deamination (66%, p < 0.001) in platelets from women using 3G contraceptives compared with the control. Furthermore, the results showed decreased ADO deamination (66%, p < 0.05) in lymphocytes and decreased ATP hydrolysis (52%, p < 0.05) and decreased ADO deamination (57%, p < 0.001) in platelets from women using 4G contraceptives compared with the control. The observed patterns of AMP hydrolysis are compatible with an ADO-poor vascular microenvironment. Likewise, the decrease in E-ADA activity may be associated with lower concentrations of ADO in the vascular microenvironment, which has antiplatelet and anti-inflammatory effects. Overall, the findings demonstrated that hormonal contraceptives alter the activity of purinergic ectoenzymes, which might be related to their effects on hemostasis and a predisposition to thromboembolic events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信