不同的多组急性运动反应揭示性别作为一个生物学变量的影响。

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Physiological genomics Pub Date : 2025-05-01 Epub Date: 2025-02-27 DOI:10.1152/physiolgenomics.00055.2024
Kaleen M Lavin, Samia M O'Bryan, Khyatiben V Pathak, Krystine Garcia-Mansfield, Zachary A Graham, Jeremy S McAdam, Devin J Drummer, Margaret B Bell, Christian J Kelley, Manoel E Lixandrão, Brandon Peoples, Regina S Seay, Anakaren R Torres, Rebecca Reiman, Eric Alsop, Elizabeth Hutchins, Anna Bonfitto, Jerry Antone, Joanna Palade, Kendall Van Keuren-Jensen, Matthew J Huentelman, Patrick Pirrotte, Timothy Broderick, Marcas M Bamman
{"title":"不同的多组急性运动反应揭示性别作为一个生物学变量的影响。","authors":"Kaleen M Lavin, Samia M O'Bryan, Khyatiben V Pathak, Krystine Garcia-Mansfield, Zachary A Graham, Jeremy S McAdam, Devin J Drummer, Margaret B Bell, Christian J Kelley, Manoel E Lixandrão, Brandon Peoples, Regina S Seay, Anakaren R Torres, Rebecca Reiman, Eric Alsop, Elizabeth Hutchins, Anna Bonfitto, Jerry Antone, Joanna Palade, Kendall Van Keuren-Jensen, Matthew J Huentelman, Patrick Pirrotte, Timothy Broderick, Marcas M Bamman","doi":"10.1152/physiolgenomics.00055.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The majority of exercise physiology research has been conducted in males, resulting in a skewed biological representation of how exercise impacts the physiological system. Extrapolating male-centric physiological findings to females is not universally appropriate and may even be detrimental. Thus, addressing this imbalance and taking into consideration sex as a biological variable is mandatory for optimization of precision exercise interventions and/or regimens. Our present analysis focused on establishing multiomic profiles in young, exercise-naïve males (<i>n</i> = 23) and females (<i>n</i> = 17) at rest and following acute exercise. Sex differences were characterized at baseline and following exercise using skeletal muscle and extracellular vesicle transcriptomics, whole blood methylomics, and serum metabolomics. Sex-by-time analysis of the acute exercise response revealed notable overlap, and divergent molecular responses between males and females. An exploratory comparison of two combined exercise regimens [high-intensity tactical training (HITT) and traditional (TRAD)] was then performed using singular value decomposition, revealing latent data structures that suggest a complex dose-by-sex interaction response to exercise. These findings lay the groundwork for an understanding of key differences in responses to acute exercise exposure between sexes. This may be leveraged in designing optimal training strategies, understanding common and divergent molecular interplay guiding exercise responses, and elucidating the role of sex hormones and/or other sex-specific attributes in responses to acute and chronic exercise.<b>NEW & NOTEWORTHY</b> This study examined methylomics, transcriptomics, and metabolomics in circulation and/or skeletal muscle of young, healthy, exercise-naïve males and females before and after exposure to either traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found an overlapping yet considerably sex-divergent response in the molecular mechanisms activated by exercise. These findings may provide insight into optimal training strategies for adaptation when considering sex as a biological variable.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"321-342"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergent multiomic acute exercise responses reveal the impact of sex as a biological variable.\",\"authors\":\"Kaleen M Lavin, Samia M O'Bryan, Khyatiben V Pathak, Krystine Garcia-Mansfield, Zachary A Graham, Jeremy S McAdam, Devin J Drummer, Margaret B Bell, Christian J Kelley, Manoel E Lixandrão, Brandon Peoples, Regina S Seay, Anakaren R Torres, Rebecca Reiman, Eric Alsop, Elizabeth Hutchins, Anna Bonfitto, Jerry Antone, Joanna Palade, Kendall Van Keuren-Jensen, Matthew J Huentelman, Patrick Pirrotte, Timothy Broderick, Marcas M Bamman\",\"doi\":\"10.1152/physiolgenomics.00055.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The majority of exercise physiology research has been conducted in males, resulting in a skewed biological representation of how exercise impacts the physiological system. Extrapolating male-centric physiological findings to females is not universally appropriate and may even be detrimental. Thus, addressing this imbalance and taking into consideration sex as a biological variable is mandatory for optimization of precision exercise interventions and/or regimens. Our present analysis focused on establishing multiomic profiles in young, exercise-naïve males (<i>n</i> = 23) and females (<i>n</i> = 17) at rest and following acute exercise. Sex differences were characterized at baseline and following exercise using skeletal muscle and extracellular vesicle transcriptomics, whole blood methylomics, and serum metabolomics. Sex-by-time analysis of the acute exercise response revealed notable overlap, and divergent molecular responses between males and females. An exploratory comparison of two combined exercise regimens [high-intensity tactical training (HITT) and traditional (TRAD)] was then performed using singular value decomposition, revealing latent data structures that suggest a complex dose-by-sex interaction response to exercise. These findings lay the groundwork for an understanding of key differences in responses to acute exercise exposure between sexes. This may be leveraged in designing optimal training strategies, understanding common and divergent molecular interplay guiding exercise responses, and elucidating the role of sex hormones and/or other sex-specific attributes in responses to acute and chronic exercise.<b>NEW & NOTEWORTHY</b> This study examined methylomics, transcriptomics, and metabolomics in circulation and/or skeletal muscle of young, healthy, exercise-naïve males and females before and after exposure to either traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found an overlapping yet considerably sex-divergent response in the molecular mechanisms activated by exercise. These findings may provide insight into optimal training strategies for adaptation when considering sex as a biological variable.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":\" \",\"pages\":\"321-342\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00055.2024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00055.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大多数运动生理学研究都是在男性中进行的,这导致了运动如何影响生理系统的生物学表征的扭曲。将以男性为中心的生理发现外推到女性身上并不普遍适用,甚至可能是有害的。因此,解决这种不平衡,并考虑性别作为一个生物学变量,是优化精确运动干预和/或方案的必要条件。我们目前的分析侧重于建立年轻的exercise-naïve男性(n=23)和女性(n=17)在休息和剧烈运动后的多组谱。在基线和运动后,使用骨骼肌和细胞外囊泡转录组学、全血甲基组学和血清代谢组学对性别差异进行了表征。对急性运动反应的性别时间分析显示,男性和女性的分子反应有明显的重叠,也有不同。然后使用奇异值分解对两种联合运动方案(高强度:HITT和传统:TRAD)进行探索性比较,揭示了潜在的数据结构,表明运动具有复杂的按性别剂量相互作用反应。这些发现为理解两性对急性运动暴露反应的关键差异奠定了基础。这可能有助于设计最佳训练策略,理解指导运动反应的共同和不同的分子相互作用,并阐明性激素和/或其他性别特异性属性在急性和慢性运动反应中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divergent multiomic acute exercise responses reveal the impact of sex as a biological variable.

The majority of exercise physiology research has been conducted in males, resulting in a skewed biological representation of how exercise impacts the physiological system. Extrapolating male-centric physiological findings to females is not universally appropriate and may even be detrimental. Thus, addressing this imbalance and taking into consideration sex as a biological variable is mandatory for optimization of precision exercise interventions and/or regimens. Our present analysis focused on establishing multiomic profiles in young, exercise-naïve males (n = 23) and females (n = 17) at rest and following acute exercise. Sex differences were characterized at baseline and following exercise using skeletal muscle and extracellular vesicle transcriptomics, whole blood methylomics, and serum metabolomics. Sex-by-time analysis of the acute exercise response revealed notable overlap, and divergent molecular responses between males and females. An exploratory comparison of two combined exercise regimens [high-intensity tactical training (HITT) and traditional (TRAD)] was then performed using singular value decomposition, revealing latent data structures that suggest a complex dose-by-sex interaction response to exercise. These findings lay the groundwork for an understanding of key differences in responses to acute exercise exposure between sexes. This may be leveraged in designing optimal training strategies, understanding common and divergent molecular interplay guiding exercise responses, and elucidating the role of sex hormones and/or other sex-specific attributes in responses to acute and chronic exercise.NEW & NOTEWORTHY This study examined methylomics, transcriptomics, and metabolomics in circulation and/or skeletal muscle of young, healthy, exercise-naïve males and females before and after exposure to either traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found an overlapping yet considerably sex-divergent response in the molecular mechanisms activated by exercise. These findings may provide insight into optimal training strategies for adaptation when considering sex as a biological variable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信