解码阿尔茨海默病中糖原合成酶激酶3- β调节中神经营养因子的作用。

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Molecular Neurobiology Pub Date : 2025-07-01 Epub Date: 2025-02-27 DOI:10.1007/s12035-025-04776-x
Shubham Nilkanth Rahmatkar, Damanpreet Singh
{"title":"解码阿尔茨海默病中糖原合成酶激酶3- β调节中神经营养因子的作用。","authors":"Shubham Nilkanth Rahmatkar, Damanpreet Singh","doi":"10.1007/s12035-025-04776-x","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most prevalent contributor to dementia in elderly individuals. Numerous signalling pathways influencing AD pathophysiology, involving glycogen synthase kinase-3β (Gsk-3β), have been investigated extensively as potential therapeutic targets. Gsk-3β is a critical factor in AD pathogenesis that affects several key hallmarks of the disease notably tau phosphorylation, amyloid-β generation, cognition, neurogenesis, and synaptic integrity. Neurotrophins are small proteins that are critical for maintaining neuronal health and function and may be used to treat neurodegenerative diseases. Notably, the dysregulation of certain neurotrophins and their receptors is also linked with AD which is a major contributor to neurodegeneration. Studies indicated that neurotrophins and their modulators are capable of protecting neurons by blocking the Gsk-3β activity suggesting a potential link for neuroprotection. Neurotrophins support the survival of neurons by regulating Gsk-3β activity. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) signalling pathways activate Trk receptors that trigger downstream signalling cascades that subsequently inhibit Gsk-3β activity and reduce AD-related neuropathology. We also explore the role of modulators including phosphatases, kinase cascades, and other regulatory proteins that cross paths with neurotrophin-Gsk-3β signalling. In conclusion, this manuscript summarizes both direct and indirect regulatory roles of neurotrophins and modulators on Gsk-3β to understand the intricate mechanisms driving neurodegeneration in AD.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"8603-8623"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the Role of Neurotrophins in Glycogen Synthase Kinase 3-Beta Regulation in Alzheimer's Disease.\",\"authors\":\"Shubham Nilkanth Rahmatkar, Damanpreet Singh\",\"doi\":\"10.1007/s12035-025-04776-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most prevalent contributor to dementia in elderly individuals. Numerous signalling pathways influencing AD pathophysiology, involving glycogen synthase kinase-3β (Gsk-3β), have been investigated extensively as potential therapeutic targets. Gsk-3β is a critical factor in AD pathogenesis that affects several key hallmarks of the disease notably tau phosphorylation, amyloid-β generation, cognition, neurogenesis, and synaptic integrity. Neurotrophins are small proteins that are critical for maintaining neuronal health and function and may be used to treat neurodegenerative diseases. Notably, the dysregulation of certain neurotrophins and their receptors is also linked with AD which is a major contributor to neurodegeneration. Studies indicated that neurotrophins and their modulators are capable of protecting neurons by blocking the Gsk-3β activity suggesting a potential link for neuroprotection. Neurotrophins support the survival of neurons by regulating Gsk-3β activity. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) signalling pathways activate Trk receptors that trigger downstream signalling cascades that subsequently inhibit Gsk-3β activity and reduce AD-related neuropathology. We also explore the role of modulators including phosphatases, kinase cascades, and other regulatory proteins that cross paths with neurotrophin-Gsk-3β signalling. In conclusion, this manuscript summarizes both direct and indirect regulatory roles of neurotrophins and modulators on Gsk-3β to understand the intricate mechanisms driving neurodegeneration in AD.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"8603-8623\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04776-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04776-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病,是老年人痴呆症的最普遍诱因。许多影响阿尔茨海默病病理生理的信号通路,包括糖原合成酶激酶-3β (Gsk-3β),已被广泛研究作为潜在的治疗靶点。Gsk-3β是阿尔茨海默病发病机制中的一个关键因素,影响该疾病的几个关键标志,特别是tau磷酸化、淀粉样蛋白-β生成、认知、神经发生和突触完整性。神经营养因子是一种对维持神经元健康和功能至关重要的小蛋白质,可用于治疗神经退行性疾病。值得注意的是,某些神经营养因子及其受体的失调也与阿尔茨海默病有关,阿尔茨海默病是神经变性的主要原因。研究表明,神经营养因子及其调节剂能够通过阻断Gsk-3β活性来保护神经元,这表明神经保护的潜在联系。神经营养因子通过调节Gsk-3β活性支持神经元的存活。脑源性神经营养因子(BDNF)和神经生长因子(NGF)信号通路激活Trk受体,触发下游信号级联反应,随后抑制Gsk-3β活性,减少ad相关神经病理。我们还探讨了包括磷酸酶、激酶级联和其他调节蛋白在内的调节剂的作用,这些调节剂与神经营养因子- gsk -3β信号通路交叉。综上所述,本文总结了神经营养因子和调节剂对Gsk-3β的直接和间接调节作用,以了解阿尔茨海默病神经退行性变的复杂机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding the Role of Neurotrophins in Glycogen Synthase Kinase 3-Beta Regulation in Alzheimer's Disease.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most prevalent contributor to dementia in elderly individuals. Numerous signalling pathways influencing AD pathophysiology, involving glycogen synthase kinase-3β (Gsk-3β), have been investigated extensively as potential therapeutic targets. Gsk-3β is a critical factor in AD pathogenesis that affects several key hallmarks of the disease notably tau phosphorylation, amyloid-β generation, cognition, neurogenesis, and synaptic integrity. Neurotrophins are small proteins that are critical for maintaining neuronal health and function and may be used to treat neurodegenerative diseases. Notably, the dysregulation of certain neurotrophins and their receptors is also linked with AD which is a major contributor to neurodegeneration. Studies indicated that neurotrophins and their modulators are capable of protecting neurons by blocking the Gsk-3β activity suggesting a potential link for neuroprotection. Neurotrophins support the survival of neurons by regulating Gsk-3β activity. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) signalling pathways activate Trk receptors that trigger downstream signalling cascades that subsequently inhibit Gsk-3β activity and reduce AD-related neuropathology. We also explore the role of modulators including phosphatases, kinase cascades, and other regulatory proteins that cross paths with neurotrophin-Gsk-3β signalling. In conclusion, this manuscript summarizes both direct and indirect regulatory roles of neurotrophins and modulators on Gsk-3β to understand the intricate mechanisms driving neurodegeneration in AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信