长短期记忆神经网络与量子计算相结合的区位边际价格分层预测

Xin Huang, Guozhong Liu, Jiajia Huan, Shuxin Luo, Jing Qiu, Feiyan Qin, Yunxia Xu
{"title":"长短期记忆神经网络与量子计算相结合的区位边际价格分层预测","authors":"Xin Huang,&nbsp;Guozhong Liu,&nbsp;Jiajia Huan,&nbsp;Shuxin Luo,&nbsp;Jing Qiu,&nbsp;Feiyan Qin,&nbsp;Yunxia Xu","doi":"10.1049/enc2.70004","DOIUrl":null,"url":null,"abstract":"<p>Accurate locational marginal price forecasting (LMPF) is crucial for the efficient allocation of resources. Nevertheless, the sudden changes in LMP make it inadequate for many existing long short-term memory (LSTM) network-based prediction models to achieve the required accuracy for practical applications. This study adopts a hierarchical method of three layers based on double quantum-inspired grey wolf optimisation (QGWO) to improve the LSTM model (HD-QGWO-LSTM) for a one-step LMPF. The top layer completes the data processing. The middle layer is a QGWO-optimised support vector machine (SVM) for classifing whether LMPs are price spikes. The bottom laver is a double QGWO-improved LSTM (QGWO-LSTM) model for a real LMPF, where one QGWO-LSTM is for the spike LMPF and the other is for the non-spike LMPF. To address the issue of excessively long training times during the design of the LSTM network structure and parameter selection, a QGWO algorithm is proposed and used to optimise four LSTM parameters. The simulation results on the New England electricity market show that the HD-QGWO-LSTM method achieves similar prediction accuracy to other four LSTM-based methods. The results also validate that the QGWO algorithm significantly reduces time consumption while ensuring optimisation effectiveness when optimising SVM and LSTM.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"6 1","pages":"51-63"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.70004","citationCount":"0","resultStr":"{\"title\":\"Combined use of long short-term memory neural network and quantum computation for hierarchical forecasting of locational marginal prices\",\"authors\":\"Xin Huang,&nbsp;Guozhong Liu,&nbsp;Jiajia Huan,&nbsp;Shuxin Luo,&nbsp;Jing Qiu,&nbsp;Feiyan Qin,&nbsp;Yunxia Xu\",\"doi\":\"10.1049/enc2.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate locational marginal price forecasting (LMPF) is crucial for the efficient allocation of resources. Nevertheless, the sudden changes in LMP make it inadequate for many existing long short-term memory (LSTM) network-based prediction models to achieve the required accuracy for practical applications. This study adopts a hierarchical method of three layers based on double quantum-inspired grey wolf optimisation (QGWO) to improve the LSTM model (HD-QGWO-LSTM) for a one-step LMPF. The top layer completes the data processing. The middle layer is a QGWO-optimised support vector machine (SVM) for classifing whether LMPs are price spikes. The bottom laver is a double QGWO-improved LSTM (QGWO-LSTM) model for a real LMPF, where one QGWO-LSTM is for the spike LMPF and the other is for the non-spike LMPF. To address the issue of excessively long training times during the design of the LSTM network structure and parameter selection, a QGWO algorithm is proposed and used to optimise four LSTM parameters. The simulation results on the New England electricity market show that the HD-QGWO-LSTM method achieves similar prediction accuracy to other four LSTM-based methods. The results also validate that the QGWO algorithm significantly reduces time consumption while ensuring optimisation effectiveness when optimising SVM and LSTM.</p>\",\"PeriodicalId\":100467,\"journal\":{\"name\":\"Energy Conversion and Economics\",\"volume\":\"6 1\",\"pages\":\"51-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.70004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/enc2.70004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的区位边际价格预测对资源的有效配置至关重要。然而,LMP的突然变化使得许多现有的基于长短期记忆(LSTM)网络的预测模型无法达到实际应用所需的精度。本研究采用基于双量子启发灰狼优化(QGWO)的三层分层方法对LSTM模型(HD-QGWO-LSTM)进行一步LMPF改进。顶层完成数据处理。中间层是qgwo优化的支持向量机(SVM),用于分类lmp是否为价格峰值。底层是一个用于实际LMPF的双qgwo改进LSTM (QGWO-LSTM)模型,其中一个QGWO-LSTM用于尖峰LMPF,另一个用于非尖峰LMPF。针对LSTM网络结构设计和参数选择过程中训练时间过长的问题,提出了QGWO算法,并利用该算法对LSTM的4个参数进行了优化。新英格兰电力市场的仿真结果表明,HD-QGWO-LSTM方法的预测精度与其他4种基于lstm的方法相似。结果还验证了QGWO算法在优化SVM和LSTM时,在保证优化效果的同时显著减少了时间消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combined use of long short-term memory neural network and quantum computation for hierarchical forecasting of locational marginal prices

Combined use of long short-term memory neural network and quantum computation for hierarchical forecasting of locational marginal prices

Accurate locational marginal price forecasting (LMPF) is crucial for the efficient allocation of resources. Nevertheless, the sudden changes in LMP make it inadequate for many existing long short-term memory (LSTM) network-based prediction models to achieve the required accuracy for practical applications. This study adopts a hierarchical method of three layers based on double quantum-inspired grey wolf optimisation (QGWO) to improve the LSTM model (HD-QGWO-LSTM) for a one-step LMPF. The top layer completes the data processing. The middle layer is a QGWO-optimised support vector machine (SVM) for classifing whether LMPs are price spikes. The bottom laver is a double QGWO-improved LSTM (QGWO-LSTM) model for a real LMPF, where one QGWO-LSTM is for the spike LMPF and the other is for the non-spike LMPF. To address the issue of excessively long training times during the design of the LSTM network structure and parameter selection, a QGWO algorithm is proposed and used to optimise four LSTM parameters. The simulation results on the New England electricity market show that the HD-QGWO-LSTM method achieves similar prediction accuracy to other four LSTM-based methods. The results also validate that the QGWO algorithm significantly reduces time consumption while ensuring optimisation effectiveness when optimising SVM and LSTM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信