NACA0015型水翼及其仿生水翼空化水动力特性实验研究

IF 2.5 3区 工程技术
Xiao-jun Li, Shi-rui Tang, Zheng-dong Wang, Kui Chen, Yu-hua Zhou, Hai Chen
{"title":"NACA0015型水翼及其仿生水翼空化水动力特性实验研究","authors":"Xiao-jun Li,&nbsp;Shi-rui Tang,&nbsp;Zheng-dong Wang,&nbsp;Kui Chen,&nbsp;Yu-hua Zhou,&nbsp;Hai Chen","doi":"10.1007/s42241-025-0109-z","DOIUrl":null,"url":null,"abstract":"<div><p>The biomimetic hydrofoils are frequently employed to enhance cavitation performance, although the underlying mechanisms remain to be fully elucidated. This study utilizes a cavitation visualization experimental system and mechanical characterization to experimentally investigate the transient cavitation features of a NACA0015 hydrofoil and its biomimetic counterparts with modified lending-edge. The findings demonstrate that, in comparison with the flat hydrofoil, the biomimetic hydrofoil experiences a cavitation morphology transition at a lower cavitation number, with a reduction of up to 0.38. Moreover, the maximum cavity length and the maximum cavitation area are reduced by 17.11%, 17.32%, signifying a reduction in cavitation intensity. Proper orthogonal decomposition (POD) analysis revealed that the primary mechanism for the enhanced cavitation performance of the leading-edge wave structured biomimetic hydrofoil is the suppression of cloud cavitation shedding. At an attack angle of 6°, the biomimetic hydrofoil exhibited the highest lift coefficient increase of 18.56%, corresponding to a lift-to-drag ratio improvement of 9.56%. By analyzing the cavitation patterns of the two hydrofoils, it is evident that the rate of change in the maximum cavity length isolines for the biomimetic hydrofoil is lower than that of the flat hydrofoil. For an equivalent level of cavitation intensity, the biomimetic hydrofoil exhibits a lower cavitation number compared with the flat hydrofoil. These demonstrate that the wavy leading-edge design of the biomimetic hydrofoil effectively reduces the severity of cavitation, thereby confirming the efficacy of the biomimetic hydrofoil in enhancing cavitation performance.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"36 6","pages":"1046 - 1056"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental research on cavitating hydrodynamic characteristics of NACA0015 hydrofoil and its biomimetic counterpart\",\"authors\":\"Xiao-jun Li,&nbsp;Shi-rui Tang,&nbsp;Zheng-dong Wang,&nbsp;Kui Chen,&nbsp;Yu-hua Zhou,&nbsp;Hai Chen\",\"doi\":\"10.1007/s42241-025-0109-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The biomimetic hydrofoils are frequently employed to enhance cavitation performance, although the underlying mechanisms remain to be fully elucidated. This study utilizes a cavitation visualization experimental system and mechanical characterization to experimentally investigate the transient cavitation features of a NACA0015 hydrofoil and its biomimetic counterparts with modified lending-edge. The findings demonstrate that, in comparison with the flat hydrofoil, the biomimetic hydrofoil experiences a cavitation morphology transition at a lower cavitation number, with a reduction of up to 0.38. Moreover, the maximum cavity length and the maximum cavitation area are reduced by 17.11%, 17.32%, signifying a reduction in cavitation intensity. Proper orthogonal decomposition (POD) analysis revealed that the primary mechanism for the enhanced cavitation performance of the leading-edge wave structured biomimetic hydrofoil is the suppression of cloud cavitation shedding. At an attack angle of 6°, the biomimetic hydrofoil exhibited the highest lift coefficient increase of 18.56%, corresponding to a lift-to-drag ratio improvement of 9.56%. By analyzing the cavitation patterns of the two hydrofoils, it is evident that the rate of change in the maximum cavity length isolines for the biomimetic hydrofoil is lower than that of the flat hydrofoil. For an equivalent level of cavitation intensity, the biomimetic hydrofoil exhibits a lower cavitation number compared with the flat hydrofoil. These demonstrate that the wavy leading-edge design of the biomimetic hydrofoil effectively reduces the severity of cavitation, thereby confirming the efficacy of the biomimetic hydrofoil in enhancing cavitation performance.</p></div>\",\"PeriodicalId\":637,\"journal\":{\"name\":\"Journal of Hydrodynamics\",\"volume\":\"36 6\",\"pages\":\"1046 - 1056\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42241-025-0109-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-025-0109-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

仿生水翼经常被用来提高空化性能,尽管潜在的机制仍有待充分阐明。本研究利用空化可视化实验系统和力学表征,对NACA0015型水翼船及其改良型仿生水翼船的瞬态空化特性进行了实验研究。研究结果表明,与平面水翼相比,仿生水翼在更低的空化数下经历了空化形态转变,减少了0.38。最大空腔长度和最大空化面积分别减小了17.11%、17.32%,空化强度减小。适当的正交分解(POD)分析表明,抑制云空化脱落是提高前缘波结构仿生水翼空化性能的主要机制。攻角为6°时,仿生水翼的升力系数提高了18.56%,升阻比提高了9.56%。通过分析两种水翼的空化模式,可以看出仿生水翼的最大空腔长度等值线的变化率明显低于平面水翼。在同等空化强度下,仿生水翼的空化数比平面水翼低。由此可见,仿生水翼的波浪型前缘设计有效降低了空化的严重程度,从而证实了仿生水翼在提高空化性能方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental research on cavitating hydrodynamic characteristics of NACA0015 hydrofoil and its biomimetic counterpart

The biomimetic hydrofoils are frequently employed to enhance cavitation performance, although the underlying mechanisms remain to be fully elucidated. This study utilizes a cavitation visualization experimental system and mechanical characterization to experimentally investigate the transient cavitation features of a NACA0015 hydrofoil and its biomimetic counterparts with modified lending-edge. The findings demonstrate that, in comparison with the flat hydrofoil, the biomimetic hydrofoil experiences a cavitation morphology transition at a lower cavitation number, with a reduction of up to 0.38. Moreover, the maximum cavity length and the maximum cavitation area are reduced by 17.11%, 17.32%, signifying a reduction in cavitation intensity. Proper orthogonal decomposition (POD) analysis revealed that the primary mechanism for the enhanced cavitation performance of the leading-edge wave structured biomimetic hydrofoil is the suppression of cloud cavitation shedding. At an attack angle of 6°, the biomimetic hydrofoil exhibited the highest lift coefficient increase of 18.56%, corresponding to a lift-to-drag ratio improvement of 9.56%. By analyzing the cavitation patterns of the two hydrofoils, it is evident that the rate of change in the maximum cavity length isolines for the biomimetic hydrofoil is lower than that of the flat hydrofoil. For an equivalent level of cavitation intensity, the biomimetic hydrofoil exhibits a lower cavitation number compared with the flat hydrofoil. These demonstrate that the wavy leading-edge design of the biomimetic hydrofoil effectively reduces the severity of cavitation, thereby confirming the efficacy of the biomimetic hydrofoil in enhancing cavitation performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
12.00%
发文量
2374
审稿时长
4.6 months
期刊介绍: Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信