用于先进不对称超级电容器的CoZrO3@Graphene纳米片纳米复合材料的可持续微波辅助工艺

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
J. John Benitto, J. Judith Vijaya
{"title":"用于先进不对称超级电容器的CoZrO3@Graphene纳米片纳米复合材料的可持续微波辅助工艺","authors":"J. John Benitto,&nbsp;J. Judith Vijaya","doi":"10.1016/j.solidstatesciences.2025.107881","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the growing energy crisis driven by rapid urbanization and population growth, the research investigates the development of high-performance supercapacitor electrode materials. Specifically, CoZrO<sub>3</sub> and its composite with graphene nanoplatelets (GNP) were synthesized using a microwave-assisted combustion method. Structural and morphological characteristics were confirmed by X-ray Diffraction (XRD), Fourier Transform Raman, UV–vis diffuse reflectance spectroscopy (UV-DRS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N<sub>2</sub> adsorption/desorption studies. The prepared CoZrO<sub>3</sub>@GNP nanocomposites exhibited exemplary electrochemical performance by achieving a maximum specific capacitance of 1003 F g<sup>−1</sup> at a current density of 2 A g<sup>−1</sup>. An asymmetric supercapacitor device fabricated with this nanocomposite demonstrated a specific capacitance of 129.05 F g<sup>−1</sup> at 2 A g<sup>−1</sup>, maintaining 89 % of its initial capacitance after 2000 cycles and delivering an energy density of 165.18 W h kg<sup>−1</sup> and maximum power density of 9.14 W kg<sup>−1</sup>. The significant improvements are attributed to the synergistic effects of the GNP integration, highlighting the potential of CoZrO<sub>3</sub>@GNP as a viable electrode material for advanced energy storage applications.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"162 ","pages":"Article 107881"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable microwave-assisted crafting of CoZrO3@Graphene nanoplatelets nanocomposites for advanced asymmetric supercapacitors\",\"authors\":\"J. John Benitto,&nbsp;J. Judith Vijaya\",\"doi\":\"10.1016/j.solidstatesciences.2025.107881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In response to the growing energy crisis driven by rapid urbanization and population growth, the research investigates the development of high-performance supercapacitor electrode materials. Specifically, CoZrO<sub>3</sub> and its composite with graphene nanoplatelets (GNP) were synthesized using a microwave-assisted combustion method. Structural and morphological characteristics were confirmed by X-ray Diffraction (XRD), Fourier Transform Raman, UV–vis diffuse reflectance spectroscopy (UV-DRS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N<sub>2</sub> adsorption/desorption studies. The prepared CoZrO<sub>3</sub>@GNP nanocomposites exhibited exemplary electrochemical performance by achieving a maximum specific capacitance of 1003 F g<sup>−1</sup> at a current density of 2 A g<sup>−1</sup>. An asymmetric supercapacitor device fabricated with this nanocomposite demonstrated a specific capacitance of 129.05 F g<sup>−1</sup> at 2 A g<sup>−1</sup>, maintaining 89 % of its initial capacitance after 2000 cycles and delivering an energy density of 165.18 W h kg<sup>−1</sup> and maximum power density of 9.14 W kg<sup>−1</sup>. The significant improvements are attributed to the synergistic effects of the GNP integration, highlighting the potential of CoZrO<sub>3</sub>@GNP as a viable electrode material for advanced energy storage applications.</div></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":\"162 \",\"pages\":\"Article 107881\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1293255825000597\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825000597","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

为了应对快速城市化和人口增长所带来的日益严重的能源危机,本研究探讨了高性能超级电容器电极材料的发展。具体而言,采用微波辅助燃烧的方法合成了CoZrO3及其与石墨烯纳米片(GNP)的复合材料。通过x射线衍射(XRD)、傅里叶变换拉曼(Fourier Transform Raman)、紫外-可见漫反射光谱(UV-DRS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、x射线光电子能谱(XPS)和N2吸附/脱附研究证实了其结构和形态特征。制备的CoZrO3@GNP纳米复合材料在电流密度为2 a g−1时的最大比电容达到1003 F g−1,表现出优异的电化学性能。用该纳米复合材料制备的非对称超级电容器器件在2 a g−1时的比电容为129.05 F g−1,在2000次循环后保持初始电容的89%,能量密度为165.18 W h kg−1,最大功率密度为9.14 W kg−1。显著的改进归功于GNP集成的协同效应,突出了CoZrO3@GNP作为先进储能应用的可行电极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustainable microwave-assisted crafting of CoZrO3@Graphene nanoplatelets nanocomposites for advanced asymmetric supercapacitors

Sustainable microwave-assisted crafting of CoZrO3@Graphene nanoplatelets nanocomposites for advanced asymmetric supercapacitors
In response to the growing energy crisis driven by rapid urbanization and population growth, the research investigates the development of high-performance supercapacitor electrode materials. Specifically, CoZrO3 and its composite with graphene nanoplatelets (GNP) were synthesized using a microwave-assisted combustion method. Structural and morphological characteristics were confirmed by X-ray Diffraction (XRD), Fourier Transform Raman, UV–vis diffuse reflectance spectroscopy (UV-DRS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption/desorption studies. The prepared CoZrO3@GNP nanocomposites exhibited exemplary electrochemical performance by achieving a maximum specific capacitance of 1003 F g−1 at a current density of 2 A g−1. An asymmetric supercapacitor device fabricated with this nanocomposite demonstrated a specific capacitance of 129.05 F g−1 at 2 A g−1, maintaining 89 % of its initial capacitance after 2000 cycles and delivering an energy density of 165.18 W h kg−1 and maximum power density of 9.14 W kg−1. The significant improvements are attributed to the synergistic effects of the GNP integration, highlighting the potential of CoZrO3@GNP as a viable electrode material for advanced energy storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信