{"title":"中子辐照超细晶奥氏体不锈钢的显微组织演变","authors":"Frederic Habiyaremye , Solène Rouland , Bertrand Radiguet , Fabien Cuvilly , Benjamin Klaes , Benoit Tanguy , Joël Malaplate , Christophe Domain , Diogo Goncalves , Marina M. Abramova , Nariman A. Enikeev , Xavier Sauvage , Auriane Etienne","doi":"10.1016/j.jnucmat.2025.155710","DOIUrl":null,"url":null,"abstract":"<div><div>Austenitic stainless steels utilized in-core components of pressurized water reactors are prone to radiation-induced segregation, which leads to the degradation of microstructure and mechanical properties. To improve irradiation resistance, one possible solution is to increase the number density of point defect sinks, such as grain boundaries. For this purpose, ultrafine-grained or nanostructured microstructures are recommended due to their high density of grain boundaries. This paper investigates the microstructural changes in ultrafine-grained 316 austenitic stainless steel exposed to neutron radiation up to 3.9 dpa in irradiation conditions representative of light water reactors. The microstructure at different length scales was analyzed using electron backscattered diffraction, transmission electron microscopy, and atom probe tomography before and after neutron irradiation. The study compares its findings with those of existing literature on coarse-grained austenitic stainless steels to evaluate the benefit of ultrafine-grained 316 austenitic stainless steels regarding irradiation ageing in representative conditions of light water reactors.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"607 ","pages":"Article 155710"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural evolution of neutron irradiated ultrafine-grained austenitic stainless steel\",\"authors\":\"Frederic Habiyaremye , Solène Rouland , Bertrand Radiguet , Fabien Cuvilly , Benjamin Klaes , Benoit Tanguy , Joël Malaplate , Christophe Domain , Diogo Goncalves , Marina M. Abramova , Nariman A. Enikeev , Xavier Sauvage , Auriane Etienne\",\"doi\":\"10.1016/j.jnucmat.2025.155710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Austenitic stainless steels utilized in-core components of pressurized water reactors are prone to radiation-induced segregation, which leads to the degradation of microstructure and mechanical properties. To improve irradiation resistance, one possible solution is to increase the number density of point defect sinks, such as grain boundaries. For this purpose, ultrafine-grained or nanostructured microstructures are recommended due to their high density of grain boundaries. This paper investigates the microstructural changes in ultrafine-grained 316 austenitic stainless steel exposed to neutron radiation up to 3.9 dpa in irradiation conditions representative of light water reactors. The microstructure at different length scales was analyzed using electron backscattered diffraction, transmission electron microscopy, and atom probe tomography before and after neutron irradiation. The study compares its findings with those of existing literature on coarse-grained austenitic stainless steels to evaluate the benefit of ultrafine-grained 316 austenitic stainless steels regarding irradiation ageing in representative conditions of light water reactors.</div></div>\",\"PeriodicalId\":373,\"journal\":{\"name\":\"Journal of Nuclear Materials\",\"volume\":\"607 \",\"pages\":\"Article 155710\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022311525001059\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311525001059","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructural evolution of neutron irradiated ultrafine-grained austenitic stainless steel
Austenitic stainless steels utilized in-core components of pressurized water reactors are prone to radiation-induced segregation, which leads to the degradation of microstructure and mechanical properties. To improve irradiation resistance, one possible solution is to increase the number density of point defect sinks, such as grain boundaries. For this purpose, ultrafine-grained or nanostructured microstructures are recommended due to their high density of grain boundaries. This paper investigates the microstructural changes in ultrafine-grained 316 austenitic stainless steel exposed to neutron radiation up to 3.9 dpa in irradiation conditions representative of light water reactors. The microstructure at different length scales was analyzed using electron backscattered diffraction, transmission electron microscopy, and atom probe tomography before and after neutron irradiation. The study compares its findings with those of existing literature on coarse-grained austenitic stainless steels to evaluate the benefit of ultrafine-grained 316 austenitic stainless steels regarding irradiation ageing in representative conditions of light water reactors.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.