基于梯度的三维非线性光谱模型用于提供短波城市图像中混合像元的组分光学特性

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Zhijun Zhen , Shengbo Chen , Nicolas Lauret , Abdelaziz Kallel , Eric Chavanon , Tiangang Yin , Jonathan León-Tavares , Biao Cao , Jordan Guilleux , Jean-Philippe Gastellu-Etchegorry
{"title":"基于梯度的三维非线性光谱模型用于提供短波城市图像中混合像元的组分光学特性","authors":"Zhijun Zhen ,&nbsp;Shengbo Chen ,&nbsp;Nicolas Lauret ,&nbsp;Abdelaziz Kallel ,&nbsp;Eric Chavanon ,&nbsp;Tiangang Yin ,&nbsp;Jonathan León-Tavares ,&nbsp;Biao Cao ,&nbsp;Jordan Guilleux ,&nbsp;Jean-Philippe Gastellu-Etchegorry","doi":"10.1016/j.rse.2025.114657","DOIUrl":null,"url":null,"abstract":"<div><div>Unmixing optical properties (OP) of land covers from coarse spatial resolution images is crucial for microclimate and energy balance studies. We propose the Unmixing Spectral method using Discrete Anisotropic Radiative Transfer (DART) model (US-DART), a novel approach for unmixing endmember OP in the shortwave domain from mono- or multispectral remotely sensed images. US-DART comprises four modules: pure pixel selection, linear spectral mixture analysis, gradient iterations, and spectral correlation. US-DART requires a surface reflectance image, a 3D mock-up with facets’ group information, and standard DART parameters (e.g., spatial resolution and skylight ratio) as inputs, producing an OP map for each scene element. The accuracy of US-DART is evaluated using two types of scenes (vegetation and urban) and images (Sentinel-2 surface reflectance and DART-simulated pseudo-satellite images). Results demonstrate a median relative error of approximately 0.1 % for pixel reflectance, with higher accuracy for opaque surfaces compared to translucent materials. Excluding co-registration errors and sensor noise, the median relative error of OP is typically around 1 % for opaque elements and 1–5 % for translucent elements with an accurate a priori “reflectance-transmittance” ratio. US-DART enhances our ability to derive detailed OP from coarse-resolution imagery, potentially enabling more accurate modeling of spatial resolution conversions, and energy dynamics, including albedo and shortwave radiation balance, across diverse environments.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"321 ","pages":"Article 114657"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A gradient-based 3D nonlinear spectral model for providing components optical properties of mixed pixels in shortwave urban images\",\"authors\":\"Zhijun Zhen ,&nbsp;Shengbo Chen ,&nbsp;Nicolas Lauret ,&nbsp;Abdelaziz Kallel ,&nbsp;Eric Chavanon ,&nbsp;Tiangang Yin ,&nbsp;Jonathan León-Tavares ,&nbsp;Biao Cao ,&nbsp;Jordan Guilleux ,&nbsp;Jean-Philippe Gastellu-Etchegorry\",\"doi\":\"10.1016/j.rse.2025.114657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unmixing optical properties (OP) of land covers from coarse spatial resolution images is crucial for microclimate and energy balance studies. We propose the Unmixing Spectral method using Discrete Anisotropic Radiative Transfer (DART) model (US-DART), a novel approach for unmixing endmember OP in the shortwave domain from mono- or multispectral remotely sensed images. US-DART comprises four modules: pure pixel selection, linear spectral mixture analysis, gradient iterations, and spectral correlation. US-DART requires a surface reflectance image, a 3D mock-up with facets’ group information, and standard DART parameters (e.g., spatial resolution and skylight ratio) as inputs, producing an OP map for each scene element. The accuracy of US-DART is evaluated using two types of scenes (vegetation and urban) and images (Sentinel-2 surface reflectance and DART-simulated pseudo-satellite images). Results demonstrate a median relative error of approximately 0.1 % for pixel reflectance, with higher accuracy for opaque surfaces compared to translucent materials. Excluding co-registration errors and sensor noise, the median relative error of OP is typically around 1 % for opaque elements and 1–5 % for translucent elements with an accurate a priori “reflectance-transmittance” ratio. US-DART enhances our ability to derive detailed OP from coarse-resolution imagery, potentially enabling more accurate modeling of spatial resolution conversions, and energy dynamics, including albedo and shortwave radiation balance, across diverse environments.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"321 \",\"pages\":\"Article 114657\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425725000616\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725000616","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

从粗空间分辨率图像中提取土地覆盖的光学性质对小气候和能量平衡研究至关重要。本文提出了基于离散各向异性辐射传输(DART)模型(US-DART)的解调光谱方法,这是一种从单光谱或多光谱遥感图像中解调短波端元OP的新方法。US-DART包括四个模块:纯像素选择、线性光谱混合分析、梯度迭代和光谱相关。US-DART需要一个表面反射率图像,一个带有facet组信息的3D模型,以及标准DART参数(如空间分辨率和天窗比例)作为输入,为每个场景元素生成OP图。US-DART的精度使用两种类型的场景(植被和城市)和图像(Sentinel-2表面反射率和dart模拟的伪卫星图像)进行评估。结果表明,像素反射率的中位数相对误差约为0.1%,与半透明材料相比,不透明表面具有更高的精度。排除共配准误差和传感器噪声,对于不透明元素,OP的中位数相对误差通常在1%左右,对于具有准确先验“反射率-透射率”比的半透明元素,OP的中位数相对误差通常在1 - 5%左右。US-DART增强了我们从粗分辨率图像中获得详细OP的能力,有可能在不同环境中实现更精确的空间分辨率转换和能量动力学建模,包括反照率和短波辐射平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A gradient-based 3D nonlinear spectral model for providing components optical properties of mixed pixels in shortwave urban images
Unmixing optical properties (OP) of land covers from coarse spatial resolution images is crucial for microclimate and energy balance studies. We propose the Unmixing Spectral method using Discrete Anisotropic Radiative Transfer (DART) model (US-DART), a novel approach for unmixing endmember OP in the shortwave domain from mono- or multispectral remotely sensed images. US-DART comprises four modules: pure pixel selection, linear spectral mixture analysis, gradient iterations, and spectral correlation. US-DART requires a surface reflectance image, a 3D mock-up with facets’ group information, and standard DART parameters (e.g., spatial resolution and skylight ratio) as inputs, producing an OP map for each scene element. The accuracy of US-DART is evaluated using two types of scenes (vegetation and urban) and images (Sentinel-2 surface reflectance and DART-simulated pseudo-satellite images). Results demonstrate a median relative error of approximately 0.1 % for pixel reflectance, with higher accuracy for opaque surfaces compared to translucent materials. Excluding co-registration errors and sensor noise, the median relative error of OP is typically around 1 % for opaque elements and 1–5 % for translucent elements with an accurate a priori “reflectance-transmittance” ratio. US-DART enhances our ability to derive detailed OP from coarse-resolution imagery, potentially enabling more accurate modeling of spatial resolution conversions, and energy dynamics, including albedo and shortwave radiation balance, across diverse environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信