揭示过程挖掘在制造业中的潜力和缺陷

Júlia Villwock Gomes de Oliveira, Eduardo Alves Portela Santos, Silvana Pereira Detro
{"title":"揭示过程挖掘在制造业中的潜力和缺陷","authors":"Júlia Villwock Gomes de Oliveira,&nbsp;Eduardo Alves Portela Santos,&nbsp;Silvana Pereira Detro","doi":"10.1016/j.procir.2025.01.004","DOIUrl":null,"url":null,"abstract":"<div><div>Process Mining (PM) is emerging as a crucial technique for analyzing and improving manufacturing processes within the Industry 4.0 landscape. However, the diverse mix of legacy and state-of-the-art technologies in modern manufacturing poses significant challenges for PM applications. This paper maps the current state of PM in manufacturing by analyzing 34 papers from the past five years and identifies six thematic groups: Production, Planning and Control, Quality, Industry 4.0, Digital Twin, Logistics, and Maintenance. These groups highlight specific challenges that can be addressed with comprehensive PM solutions. Two major categories of challenges are identified: Information Technology, which relates to data complexity and quality, and Governance, which pertains to data accountability and regulations. Object-Centric Process Mining (OCPM) extends traditional PM by focusing on multiple interacting objects, providing a more comprehensive view of manufacturing processes.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"132 ","pages":"Pages 19-24"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the potential and pitfalls of Process Mining in manufacturing\",\"authors\":\"Júlia Villwock Gomes de Oliveira,&nbsp;Eduardo Alves Portela Santos,&nbsp;Silvana Pereira Detro\",\"doi\":\"10.1016/j.procir.2025.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Process Mining (PM) is emerging as a crucial technique for analyzing and improving manufacturing processes within the Industry 4.0 landscape. However, the diverse mix of legacy and state-of-the-art technologies in modern manufacturing poses significant challenges for PM applications. This paper maps the current state of PM in manufacturing by analyzing 34 papers from the past five years and identifies six thematic groups: Production, Planning and Control, Quality, Industry 4.0, Digital Twin, Logistics, and Maintenance. These groups highlight specific challenges that can be addressed with comprehensive PM solutions. Two major categories of challenges are identified: Information Technology, which relates to data complexity and quality, and Governance, which pertains to data accountability and regulations. Object-Centric Process Mining (OCPM) extends traditional PM by focusing on multiple interacting objects, providing a more comprehensive view of manufacturing processes.</div></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":\"132 \",\"pages\":\"Pages 19-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827125000046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125000046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过程挖掘(PM)正在成为工业4.0环境中分析和改进制造过程的关键技术。然而,现代制造业中遗留技术和最先进技术的多样化组合为PM应用程序带来了重大挑战。本文通过分析过去五年的34篇论文,描绘了制造业中PM的现状,并确定了六个主题组:生产、计划和控制、质量、工业4.0、数字孪生、物流和维护。这些小组强调了可以用全面的项目管理解决方案来解决的具体挑战。确定了两类主要挑战:信息技术(与数据复杂性和质量有关)和治理(与数据问责制和法规有关)。以对象为中心的过程挖掘(OCPM)通过关注多个交互对象扩展了传统的项目管理,提供了制造过程的更全面的视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncovering the potential and pitfalls of Process Mining in manufacturing
Process Mining (PM) is emerging as a crucial technique for analyzing and improving manufacturing processes within the Industry 4.0 landscape. However, the diverse mix of legacy and state-of-the-art technologies in modern manufacturing poses significant challenges for PM applications. This paper maps the current state of PM in manufacturing by analyzing 34 papers from the past five years and identifies six thematic groups: Production, Planning and Control, Quality, Industry 4.0, Digital Twin, Logistics, and Maintenance. These groups highlight specific challenges that can be addressed with comprehensive PM solutions. Two major categories of challenges are identified: Information Technology, which relates to data complexity and quality, and Governance, which pertains to data accountability and regulations. Object-Centric Process Mining (OCPM) extends traditional PM by focusing on multiple interacting objects, providing a more comprehensive view of manufacturing processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信