设计热力学稳定的贵金属单原子光催化剂,用于乙醇高效非氧化转化为高纯氢和增值乙醛

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou
{"title":"设计热力学稳定的贵金属单原子光催化剂,用于乙醇高效非氧化转化为高纯氢和增值乙醛","authors":"Yuchen Zhou ,&nbsp;Huanmin Liu ,&nbsp;Hongxing Li ,&nbsp;Xinyu Song ,&nbsp;Yonghua Tang ,&nbsp;Peng Zhou","doi":"10.1016/j.actphy.2025.100067","DOIUrl":null,"url":null,"abstract":"<div><div>The intrinsic surface atomic configuration of photocatalyst without unstable or difficult-to-generate atomic vacancies often limits the formation of effective interaction between metal single atom (MSA) cocatalyst and photocatalyst, thus inhibiting the stability and performance improvement of single-atom photocatalysts. In this study, we present a convenient and cost-effective photochemical oxygen reduction reaction (ORR) mechanism to prepare thermodynamically stable noble metal single-atom cocatalysts on TiO<sub>2</sub> photocatalyst under mild condition (only consuming water and oxygen at 101,325 ​Pa and 25 ​°C). The first-principles simulation firstly theoretically reveals that the intrinsic surface configuration of TiO<sub>2</sub> can only produce unstable Pt–O<sub>2</sub> structure. However, ORR occurring on TiO<sub>2</sub> can not only provide one foreign oxygen to coordinate with Pt single atom (PtSA), but also induce one surface lattice oxygen to move toward PtSA, promoting the formation of one thermodynamically stable Pt–O<sub>4</sub> species, demonstrated by the experimental synthesis of PtSA on TiO<sub>2</sub> in oxygen atmosphere instead of inert atmosphere. The obtained stable PtSA-TiO<sub>2</sub> photocatalysts exhibit a photocatalytic rate of 320.4 ​mmol·g<sup>−1</sup>·h<sup>−1</sup> for the coproduction of high-purity hydrogen and value-added acetaldehyde with a selectivity of 99.65%, three-fold higher than the activity of Pt nanoparticles-loaded TiO<sub>2</sub>. This strategy is further extended to other noble metals, such as Rh and Pd.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 6","pages":"Article 100067"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde\",\"authors\":\"Yuchen Zhou ,&nbsp;Huanmin Liu ,&nbsp;Hongxing Li ,&nbsp;Xinyu Song ,&nbsp;Yonghua Tang ,&nbsp;Peng Zhou\",\"doi\":\"10.1016/j.actphy.2025.100067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The intrinsic surface atomic configuration of photocatalyst without unstable or difficult-to-generate atomic vacancies often limits the formation of effective interaction between metal single atom (MSA) cocatalyst and photocatalyst, thus inhibiting the stability and performance improvement of single-atom photocatalysts. In this study, we present a convenient and cost-effective photochemical oxygen reduction reaction (ORR) mechanism to prepare thermodynamically stable noble metal single-atom cocatalysts on TiO<sub>2</sub> photocatalyst under mild condition (only consuming water and oxygen at 101,325 ​Pa and 25 ​°C). The first-principles simulation firstly theoretically reveals that the intrinsic surface configuration of TiO<sub>2</sub> can only produce unstable Pt–O<sub>2</sub> structure. However, ORR occurring on TiO<sub>2</sub> can not only provide one foreign oxygen to coordinate with Pt single atom (PtSA), but also induce one surface lattice oxygen to move toward PtSA, promoting the formation of one thermodynamically stable Pt–O<sub>4</sub> species, demonstrated by the experimental synthesis of PtSA on TiO<sub>2</sub> in oxygen atmosphere instead of inert atmosphere. The obtained stable PtSA-TiO<sub>2</sub> photocatalysts exhibit a photocatalytic rate of 320.4 ​mmol·g<sup>−1</sup>·h<sup>−1</sup> for the coproduction of high-purity hydrogen and value-added acetaldehyde with a selectivity of 99.65%, three-fold higher than the activity of Pt nanoparticles-loaded TiO<sub>2</sub>. This strategy is further extended to other noble metals, such as Rh and Pd.</div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"41 6\",\"pages\":\"Article 100067\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681825000232\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000232","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化剂表面固有的原子构型没有不稳定或难以生成的原子空位,往往限制了金属单原子(MSA)助催化剂与光催化剂之间有效相互作用的形成,从而抑制了单原子光催化剂的稳定性和性能的提高。在本研究中,我们提出了一种方便且经济的光化学氧还原反应(ORR)机制,在温和条件下(仅在101,325 Pa和25°C下消耗水和氧气)在TiO2光催化剂上制备热稳定的贵金属单原子助催化剂。第一性原理模拟首先从理论上揭示了TiO2的内在表面构型只能产生不稳定的Pt-O2结构。然而,在TiO2上发生的ORR不仅可以提供一个外来氧与Pt单原子(PtSA)配位,还可以诱导一个表面晶格氧向PtSA移动,促进形成一个热力学稳定的Pt - o4物质,这在氧气氛而不是惰性气氛下在TiO2上合成PtSA的实验中得到了证明。所制得的稳定PtSA-TiO2光催化剂的光催化速率为320.4 mmol·g−1·h−1,选择性为99.65%,比负载Pt纳米粒子的TiO2活性高3倍。这一策略进一步扩展到其他贵金属,如Rh和Pd。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde

Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde
The intrinsic surface atomic configuration of photocatalyst without unstable or difficult-to-generate atomic vacancies often limits the formation of effective interaction between metal single atom (MSA) cocatalyst and photocatalyst, thus inhibiting the stability and performance improvement of single-atom photocatalysts. In this study, we present a convenient and cost-effective photochemical oxygen reduction reaction (ORR) mechanism to prepare thermodynamically stable noble metal single-atom cocatalysts on TiO2 photocatalyst under mild condition (only consuming water and oxygen at 101,325 ​Pa and 25 ​°C). The first-principles simulation firstly theoretically reveals that the intrinsic surface configuration of TiO2 can only produce unstable Pt–O2 structure. However, ORR occurring on TiO2 can not only provide one foreign oxygen to coordinate with Pt single atom (PtSA), but also induce one surface lattice oxygen to move toward PtSA, promoting the formation of one thermodynamically stable Pt–O4 species, demonstrated by the experimental synthesis of PtSA on TiO2 in oxygen atmosphere instead of inert atmosphere. The obtained stable PtSA-TiO2 photocatalysts exhibit a photocatalytic rate of 320.4 ​mmol·g−1·h−1 for the coproduction of high-purity hydrogen and value-added acetaldehyde with a selectivity of 99.65%, three-fold higher than the activity of Pt nanoparticles-loaded TiO2. This strategy is further extended to other noble metals, such as Rh and Pd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信