{"title":"T1上的周期性Schrödinger极大函数的水平集估计","authors":"Ciprian Demeter","doi":"10.1016/j.aim.2025.110186","DOIUrl":null,"url":null,"abstract":"<div><div>We prove (essentially) sharp <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> level set estimates for the periodic Schrödinger maximal operator in a certain range of the cut-off parameter.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"467 ","pages":"Article 110186"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Level set estimates for the periodic Schrödinger maximal function on T1\",\"authors\":\"Ciprian Demeter\",\"doi\":\"10.1016/j.aim.2025.110186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove (essentially) sharp <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> level set estimates for the periodic Schrödinger maximal operator in a certain range of the cut-off parameter.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"467 \",\"pages\":\"Article 110186\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825000842\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000842","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.