基于探地雷达的不同压实度下路基重量含水率测定研究

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Shirong Yan , Xinzhuang Cui , Xiaoning Zhang , Hao Zeng , Yefeng Du , Jiayi Lang
{"title":"基于探地雷达的不同压实度下路基重量含水率测定研究","authors":"Shirong Yan ,&nbsp;Xinzhuang Cui ,&nbsp;Xiaoning Zhang ,&nbsp;Hao Zeng ,&nbsp;Yefeng Du ,&nbsp;Jiayi Lang","doi":"10.1016/j.trgeo.2025.101535","DOIUrl":null,"url":null,"abstract":"<div><div>It is essential for improving the accuracy of subgrade compactness detection to realize the real-time determination of gravimetric moisture content during subgrade compaction. In this study, a subgrade gravimetric moisture content semi-empirical model is established to evaluate the influence of subgrade filling materials types and compactness on the subgrade gravimetric moisture content. The laboratory and field tests for different subgrade types are carried out to collect the subgrade dielectric constant under different compactness. The proposed semi-empirical model is fitted based on the experimental results and the data from the literature. The Ground Penetrating Radar (GPR) technique is then employed to obtain gravimetric moisture content by collecting the dielectric constant of the subgrade in the field test based on the proposed semi-empirical model. The results after removing anomalous data are compared with the results from the time domain reflectometry (TDR) technique. The results show that the subgrade dielectric constant subgrade increases with the gravimetric moisture content growth. And the higher compactness, the higher the dielectric constant with the same gravimetric moisture content. It can be explained that the higher compactness of the subgrade means better water retention. The proposed semi-empirical model obtains the subgrade gravimetric moisture content satisfactorily considering the types and the compactness of the subgrade, as illustrated in comparison with other models in the literature. Based on this, the GPR technique measures subgrade gravimetric moisture content more accurately compared to the TDR technique after removing anomalies. It has the advantages of not disturbing the subgrade, a wide range of applications, and high measurement accuracy, and can realize real-time non-destructive testing. This study provides a basis for determining subgrade gravimetric moisture content in real-time and non-destructive and it is important to improve the accuracy of subgrade quality evaluation.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"51 ","pages":"Article 101535"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the determination of subgrade gravimetric moisture content under different compactness based on the ground penetrating radar\",\"authors\":\"Shirong Yan ,&nbsp;Xinzhuang Cui ,&nbsp;Xiaoning Zhang ,&nbsp;Hao Zeng ,&nbsp;Yefeng Du ,&nbsp;Jiayi Lang\",\"doi\":\"10.1016/j.trgeo.2025.101535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is essential for improving the accuracy of subgrade compactness detection to realize the real-time determination of gravimetric moisture content during subgrade compaction. In this study, a subgrade gravimetric moisture content semi-empirical model is established to evaluate the influence of subgrade filling materials types and compactness on the subgrade gravimetric moisture content. The laboratory and field tests for different subgrade types are carried out to collect the subgrade dielectric constant under different compactness. The proposed semi-empirical model is fitted based on the experimental results and the data from the literature. The Ground Penetrating Radar (GPR) technique is then employed to obtain gravimetric moisture content by collecting the dielectric constant of the subgrade in the field test based on the proposed semi-empirical model. The results after removing anomalous data are compared with the results from the time domain reflectometry (TDR) technique. The results show that the subgrade dielectric constant subgrade increases with the gravimetric moisture content growth. And the higher compactness, the higher the dielectric constant with the same gravimetric moisture content. It can be explained that the higher compactness of the subgrade means better water retention. The proposed semi-empirical model obtains the subgrade gravimetric moisture content satisfactorily considering the types and the compactness of the subgrade, as illustrated in comparison with other models in the literature. Based on this, the GPR technique measures subgrade gravimetric moisture content more accurately compared to the TDR technique after removing anomalies. It has the advantages of not disturbing the subgrade, a wide range of applications, and high measurement accuracy, and can realize real-time non-destructive testing. This study provides a basis for determining subgrade gravimetric moisture content in real-time and non-destructive and it is important to improve the accuracy of subgrade quality evaluation.</div></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":\"51 \",\"pages\":\"Article 101535\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391225000546\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000546","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

实现路基压实过程中重力含水率的实时测定,是提高路基压实检测精度的关键。本研究建立了路基重量含水率半经验模型,评价路基填筑材料类型和密实度对路基重量含水率的影响。对不同路基类型进行了室内和现场试验,收集了不同压实度下路基的介电常数。根据实验结果和文献数据拟合了所提出的半经验模型。基于所建立的半经验模型,利用探地雷达(GPR)技术在现场试验中采集路基介电常数,获得重测含水率。将去除异常数据后的结果与时域反射技术(TDR)的结果进行了比较。结果表明,路基介电常数随路基重量含水率的增大而增大。在相同的重量含水率下,致密度越高,介电常数越高。可以解释为,路基的密实度越高,保水性越好。本文提出的半经验模型考虑了路基的类型和密实度,得到了较好的路基重量含水率,并与文献中其他模型进行了比较。在此基础上,GPR技术在剔除异常后比TDR技术更准确地测量了路基重力含水率。它具有不干扰路基、适用范围广、测量精度高、可实现实时无损检测等优点。该研究为实时、无损地确定路基重量含水率提供了依据,对提高路基质量评价的准确性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the determination of subgrade gravimetric moisture content under different compactness based on the ground penetrating radar
It is essential for improving the accuracy of subgrade compactness detection to realize the real-time determination of gravimetric moisture content during subgrade compaction. In this study, a subgrade gravimetric moisture content semi-empirical model is established to evaluate the influence of subgrade filling materials types and compactness on the subgrade gravimetric moisture content. The laboratory and field tests for different subgrade types are carried out to collect the subgrade dielectric constant under different compactness. The proposed semi-empirical model is fitted based on the experimental results and the data from the literature. The Ground Penetrating Radar (GPR) technique is then employed to obtain gravimetric moisture content by collecting the dielectric constant of the subgrade in the field test based on the proposed semi-empirical model. The results after removing anomalous data are compared with the results from the time domain reflectometry (TDR) technique. The results show that the subgrade dielectric constant subgrade increases with the gravimetric moisture content growth. And the higher compactness, the higher the dielectric constant with the same gravimetric moisture content. It can be explained that the higher compactness of the subgrade means better water retention. The proposed semi-empirical model obtains the subgrade gravimetric moisture content satisfactorily considering the types and the compactness of the subgrade, as illustrated in comparison with other models in the literature. Based on this, the GPR technique measures subgrade gravimetric moisture content more accurately compared to the TDR technique after removing anomalies. It has the advantages of not disturbing the subgrade, a wide range of applications, and high measurement accuracy, and can realize real-time non-destructive testing. This study provides a basis for determining subgrade gravimetric moisture content in real-time and non-destructive and it is important to improve the accuracy of subgrade quality evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信