{"title":"通过分子动力学模拟探索流感编码PB1-F2病毒孔蛋白三聚体和四聚体状态的结构和功能动力学","authors":"Sehrish Jamal , Syed Tarique Moin , Shozeb Haider","doi":"10.1016/j.jmgm.2025.108983","DOIUrl":null,"url":null,"abstract":"<div><div>Influenza Viruses have always been a major health concern due to their highly contagious nature. The PB1-F2 viroporin encoded by the influenza A virus is known to be a pro-apoptotic protein involved in cell death induction of the host immune cells. The structural arrangement and the mode of action of PB1-F2 viroporin have not been fully understood yet. Nonetheless, there is limited information on the oligomeric state of PB1-F2 and its possible role in the pore formation which could act as a channel for ion transport. The probable oligomeric structural existences of the viroporin and their channel-like behavior need to be explored in light of experimental reports cited in the literature. In our study, we report on the structural and dynamical properties of the trimeric and tetrameric state of PB1-F2, investigated by molecular dynamics simulations with improved sampling of conformational states as the initial focus of the study is to establish a rationale for their existence in a lipid environment. The simulation study provides detailed information on the mitochondrial membrane permeation pathway which causes the leakage of mitochondrial contents like cytochrome C and induces apoptosis. By focusing on low-order oligomers, trimer, and tetramer, we have identified key pore-forming characteristics that serve as a foundation for understanding the pro-apoptotic activity of PB1-F2. The structural and dynamical properties of these states were evaluated in the light of experimental reports, which reveal the tetrameric form to be the preferable state in the lipid environment, demonstrating superior structural stability, effective channel symmetry, and ion permeation compared to the higher-order oligomers besides trimer including pentameric and hexameric assemblies. The simulation results also explore the typical ion transportation criteria based on finding a less energetic barrier for ions/water molecules crossing the membrane.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"137 ","pages":"Article 108983"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the structural and functional dynamics of trimeric and tetrameric states of influenza encoded PB1-F2 viroporin through molecular dynamics simulations\",\"authors\":\"Sehrish Jamal , Syed Tarique Moin , Shozeb Haider\",\"doi\":\"10.1016/j.jmgm.2025.108983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Influenza Viruses have always been a major health concern due to their highly contagious nature. The PB1-F2 viroporin encoded by the influenza A virus is known to be a pro-apoptotic protein involved in cell death induction of the host immune cells. The structural arrangement and the mode of action of PB1-F2 viroporin have not been fully understood yet. Nonetheless, there is limited information on the oligomeric state of PB1-F2 and its possible role in the pore formation which could act as a channel for ion transport. The probable oligomeric structural existences of the viroporin and their channel-like behavior need to be explored in light of experimental reports cited in the literature. In our study, we report on the structural and dynamical properties of the trimeric and tetrameric state of PB1-F2, investigated by molecular dynamics simulations with improved sampling of conformational states as the initial focus of the study is to establish a rationale for their existence in a lipid environment. The simulation study provides detailed information on the mitochondrial membrane permeation pathway which causes the leakage of mitochondrial contents like cytochrome C and induces apoptosis. By focusing on low-order oligomers, trimer, and tetramer, we have identified key pore-forming characteristics that serve as a foundation for understanding the pro-apoptotic activity of PB1-F2. The structural and dynamical properties of these states were evaluated in the light of experimental reports, which reveal the tetrameric form to be the preferable state in the lipid environment, demonstrating superior structural stability, effective channel symmetry, and ion permeation compared to the higher-order oligomers besides trimer including pentameric and hexameric assemblies. The simulation results also explore the typical ion transportation criteria based on finding a less energetic barrier for ions/water molecules crossing the membrane.</div></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"137 \",\"pages\":\"Article 108983\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326325000439\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325000439","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Exploring the structural and functional dynamics of trimeric and tetrameric states of influenza encoded PB1-F2 viroporin through molecular dynamics simulations
Influenza Viruses have always been a major health concern due to their highly contagious nature. The PB1-F2 viroporin encoded by the influenza A virus is known to be a pro-apoptotic protein involved in cell death induction of the host immune cells. The structural arrangement and the mode of action of PB1-F2 viroporin have not been fully understood yet. Nonetheless, there is limited information on the oligomeric state of PB1-F2 and its possible role in the pore formation which could act as a channel for ion transport. The probable oligomeric structural existences of the viroporin and their channel-like behavior need to be explored in light of experimental reports cited in the literature. In our study, we report on the structural and dynamical properties of the trimeric and tetrameric state of PB1-F2, investigated by molecular dynamics simulations with improved sampling of conformational states as the initial focus of the study is to establish a rationale for their existence in a lipid environment. The simulation study provides detailed information on the mitochondrial membrane permeation pathway which causes the leakage of mitochondrial contents like cytochrome C and induces apoptosis. By focusing on low-order oligomers, trimer, and tetramer, we have identified key pore-forming characteristics that serve as a foundation for understanding the pro-apoptotic activity of PB1-F2. The structural and dynamical properties of these states were evaluated in the light of experimental reports, which reveal the tetrameric form to be the preferable state in the lipid environment, demonstrating superior structural stability, effective channel symmetry, and ion permeation compared to the higher-order oligomers besides trimer including pentameric and hexameric assemblies. The simulation results also explore the typical ion transportation criteria based on finding a less energetic barrier for ions/water molecules crossing the membrane.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.