时间尺度上具有一致导数的阻尼线性动力方程的Riccati技术与非振动性

IF 1.4 Q2 MATHEMATICS, APPLIED
Kazuki Ishibashi
{"title":"时间尺度上具有一致导数的阻尼线性动力方程的Riccati技术与非振动性","authors":"Kazuki Ishibashi","doi":"10.1016/j.rinam.2025.100553","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the use of damped linear dynamic equations with the conformable derivative on time scales to provide sufficient conditions to guarantee nonoscillation for nontrivial solutions of both ordinary differential and discrete equations. The nonoscillation theorem is proven using the Riccati technique, and we provide four examples to explain nonoscillation. The four examples include the damped Euler-type dynamic equation on a time scale, the <span><math><mi>q</mi></math></span>-difference equation, and the forward difference and ordinary differential equations with periodic coefficients. In particular, the ordinary differential equation with periodic coefficients is inspired by Whittaker–Hill’s equation, which has applications in the theory of internal rotation in the hydrogen peroxide molecule.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100553"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riccati technique and nonoscillation of damped linear dynamic equations with the conformable derivative on time scales\",\"authors\":\"Kazuki Ishibashi\",\"doi\":\"10.1016/j.rinam.2025.100553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate the use of damped linear dynamic equations with the conformable derivative on time scales to provide sufficient conditions to guarantee nonoscillation for nontrivial solutions of both ordinary differential and discrete equations. The nonoscillation theorem is proven using the Riccati technique, and we provide four examples to explain nonoscillation. The four examples include the damped Euler-type dynamic equation on a time scale, the <span><math><mi>q</mi></math></span>-difference equation, and the forward difference and ordinary differential equations with periodic coefficients. In particular, the ordinary differential equation with periodic coefficients is inspired by Whittaker–Hill’s equation, which has applications in the theory of internal rotation in the hydrogen peroxide molecule.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100553\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在时间尺度上具有相容导数的阻尼线性动力学方程,为常微分方程和离散方程的非平凡解的非振动性提供了充分条件。利用Riccati技术证明了非振荡定理,并给出了四个例子来解释非振荡定理。这四个例子包括时间尺度上的阻尼欧拉型动力方程、q-差分方程和带周期系数的正演差分方程和常微分方程。特别地,具有周期系数的常微分方程受到了惠特克-希尔方程的启发,该方程在过氧化氢分子的内旋理论中有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riccati technique and nonoscillation of damped linear dynamic equations with the conformable derivative on time scales
In this study, we investigate the use of damped linear dynamic equations with the conformable derivative on time scales to provide sufficient conditions to guarantee nonoscillation for nontrivial solutions of both ordinary differential and discrete equations. The nonoscillation theorem is proven using the Riccati technique, and we provide four examples to explain nonoscillation. The four examples include the damped Euler-type dynamic equation on a time scale, the q-difference equation, and the forward difference and ordinary differential equations with periodic coefficients. In particular, the ordinary differential equation with periodic coefficients is inspired by Whittaker–Hill’s equation, which has applications in the theory of internal rotation in the hydrogen peroxide molecule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信