假设:在医疗应用的机器学习算法开发过程中,净效益是一个目标函数

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Andrew Vickers , Alexander Hollingsworth , Anthony Bozzo , Avijit Chatterjee , Subrata Chatterjee
{"title":"假设:在医疗应用的机器学习算法开发过程中,净效益是一个目标函数","authors":"Andrew Vickers ,&nbsp;Alexander Hollingsworth ,&nbsp;Anthony Bozzo ,&nbsp;Avijit Chatterjee ,&nbsp;Subrata Chatterjee","doi":"10.1016/j.ijmedinf.2025.105844","DOIUrl":null,"url":null,"abstract":"<div><div>Net benefit is the most widely used metric for evaluating the clinical utility of medical prediction models. The approach applies decision analytic theory to weight true and false positives depending on the relative consequences of different decision outcomes. It is plausible that there are at least some machine learning scenarios where optimization of the objective function during model development will not optimize net benefit during model evaluation. We therefore hypothesize that optimizing net benefit during model development will in some cases ultimately lead to higher clinical utility than optimizing for mean square error or some other unweighted loss function. There is some preliminary evidence that this does indeed occur. We accordingly recommend further methodologic research to determine the use cases where net benefit should be the objective function during model development.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"197 ","pages":"Article 105844"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypothesis: Net benefit as an objective function during development of machine learning algorithms for medical applications\",\"authors\":\"Andrew Vickers ,&nbsp;Alexander Hollingsworth ,&nbsp;Anthony Bozzo ,&nbsp;Avijit Chatterjee ,&nbsp;Subrata Chatterjee\",\"doi\":\"10.1016/j.ijmedinf.2025.105844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Net benefit is the most widely used metric for evaluating the clinical utility of medical prediction models. The approach applies decision analytic theory to weight true and false positives depending on the relative consequences of different decision outcomes. It is plausible that there are at least some machine learning scenarios where optimization of the objective function during model development will not optimize net benefit during model evaluation. We therefore hypothesize that optimizing net benefit during model development will in some cases ultimately lead to higher clinical utility than optimizing for mean square error or some other unweighted loss function. There is some preliminary evidence that this does indeed occur. We accordingly recommend further methodologic research to determine the use cases where net benefit should be the objective function during model development.</div></div>\",\"PeriodicalId\":54950,\"journal\":{\"name\":\"International Journal of Medical Informatics\",\"volume\":\"197 \",\"pages\":\"Article 105844\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386505625000619\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505625000619","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

净效益是评估医学预测模型临床效用的最广泛使用的指标。该方法将决策分析理论应用于根据不同决策结果的相对后果对真阳性和假阳性进行加权。似乎至少存在一些机器学习场景,其中在模型开发期间优化目标函数不会在模型评估期间优化净效益。因此,我们假设在模型开发过程中优化净收益在某些情况下最终会比优化均方误差或其他一些未加权损失函数带来更高的临床效用。有一些初步证据表明,这种情况确实存在。因此,我们建议进一步的方法研究,以确定在模型开发过程中净收益应该是目标函数的用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypothesis: Net benefit as an objective function during development of machine learning algorithms for medical applications
Net benefit is the most widely used metric for evaluating the clinical utility of medical prediction models. The approach applies decision analytic theory to weight true and false positives depending on the relative consequences of different decision outcomes. It is plausible that there are at least some machine learning scenarios where optimization of the objective function during model development will not optimize net benefit during model evaluation. We therefore hypothesize that optimizing net benefit during model development will in some cases ultimately lead to higher clinical utility than optimizing for mean square error or some other unweighted loss function. There is some preliminary evidence that this does indeed occur. We accordingly recommend further methodologic research to determine the use cases where net benefit should be the objective function during model development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信