群体视觉关系检测

IF 13.7
Fan Yu;Beibei Zhang;Tongwei Ren;Jiale Liu;Gangshan Wu;Jinhui Tang
{"title":"群体视觉关系检测","authors":"Fan Yu;Beibei Zhang;Tongwei Ren;Jiale Liu;Gangshan Wu;Jinhui Tang","doi":"10.1109/TIP.2025.3543114","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel visual relation detection task, named Group Visual Relation Detection (GVRD), for detecting visual relations whose subjects and/or objects are groups (GVRs), inspired by the observation that groups are common in image semantic representation. GVRD can be deemed as an evolution over the existing visual relation detection task that limits both subjects and objects of visual relations as individuals. We propose a Simultaneous Group Relation Prediction (SGRP) method that can simultaneously predict groups and predicates to address GVRD. SGRP contains an Entity Construction (EC) module, a Feature Extraction (FE) module, and a Group Relation Prediction (GRP) module. Specifically, the EC module constructs instances, group candidates, and phrase candidates; the FE module extracts visual, location and semantic features for these entities; and the GRP module simultaneously predicts groups and predicates, and generates the GVRs. Moreover, we construct a new dataset, named COCO-GVR, to facilitate solutions to GVRD task, which consists of 9,570 images from COCO dataset and 31,855 manually labeled GVRs. We test and validate the performance of SGRP by extensive experiments on COCO-GVR dataset. It shows that SGRP outperforms the baselines generated from the state-of-the-art visual relation detection and scene graph generation methods.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1645-1659"},"PeriodicalIF":13.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group Visual Relation Detection\",\"authors\":\"Fan Yu;Beibei Zhang;Tongwei Ren;Jiale Liu;Gangshan Wu;Jinhui Tang\",\"doi\":\"10.1109/TIP.2025.3543114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel visual relation detection task, named Group Visual Relation Detection (GVRD), for detecting visual relations whose subjects and/or objects are groups (GVRs), inspired by the observation that groups are common in image semantic representation. GVRD can be deemed as an evolution over the existing visual relation detection task that limits both subjects and objects of visual relations as individuals. We propose a Simultaneous Group Relation Prediction (SGRP) method that can simultaneously predict groups and predicates to address GVRD. SGRP contains an Entity Construction (EC) module, a Feature Extraction (FE) module, and a Group Relation Prediction (GRP) module. Specifically, the EC module constructs instances, group candidates, and phrase candidates; the FE module extracts visual, location and semantic features for these entities; and the GRP module simultaneously predicts groups and predicates, and generates the GVRs. Moreover, we construct a new dataset, named COCO-GVR, to facilitate solutions to GVRD task, which consists of 9,570 images from COCO dataset and 31,855 manually labeled GVRs. We test and validate the performance of SGRP by extensive experiments on COCO-GVR dataset. It shows that SGRP outperforms the baselines generated from the state-of-the-art visual relation detection and scene graph generation methods.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"1645-1659\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10906064/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10906064/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的视觉关系检测任务,命名为组视觉关系检测(Group visual relation detection, GVRD),用于检测主体和/或对象为组的视觉关系(GVRs),该任务的灵感来自于观察到组在图像语义表示中是常见的。GVRD可以看作是对现有视觉关系检测任务的一种进化,它将视觉关系的主体和客体都限制为个体。为了解决GVRD问题,我们提出了一种可以同时预测组和谓词的同步组关系预测(SGRP)方法。SGRP包括实体构建(EC)模块、特征提取(FE)模块和组关系预测(GRP)模块。具体来说,EC模块构建实例、候选组和候选短语;FE模块提取这些实体的视觉、位置和语义特征;GRP模块同时预测组和谓词,生成gvr。此外,为了便于解决GVRD问题,我们构建了一个新的数据集COCO- gvr,该数据集由9570张COCO数据集的图像和31855张人工标记的gvr组成。我们在COCO-GVR数据集上进行了大量的实验,验证了SGRP的性能。结果表明,SGRP比当前最先进的视觉关系检测和场景图生成方法生成的基线性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group Visual Relation Detection
In this paper, we propose a novel visual relation detection task, named Group Visual Relation Detection (GVRD), for detecting visual relations whose subjects and/or objects are groups (GVRs), inspired by the observation that groups are common in image semantic representation. GVRD can be deemed as an evolution over the existing visual relation detection task that limits both subjects and objects of visual relations as individuals. We propose a Simultaneous Group Relation Prediction (SGRP) method that can simultaneously predict groups and predicates to address GVRD. SGRP contains an Entity Construction (EC) module, a Feature Extraction (FE) module, and a Group Relation Prediction (GRP) module. Specifically, the EC module constructs instances, group candidates, and phrase candidates; the FE module extracts visual, location and semantic features for these entities; and the GRP module simultaneously predicts groups and predicates, and generates the GVRs. Moreover, we construct a new dataset, named COCO-GVR, to facilitate solutions to GVRD task, which consists of 9,570 images from COCO dataset and 31,855 manually labeled GVRs. We test and validate the performance of SGRP by extensive experiments on COCO-GVR dataset. It shows that SGRP outperforms the baselines generated from the state-of-the-art visual relation detection and scene graph generation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信