基于DeepLabV3+和effentnet的超声甲状腺结节分割算法。

Nan Xiao, Demin Kong, Junfeng Wang
{"title":"基于DeepLabV3+和effentnet的超声甲状腺结节分割算法。","authors":"Nan Xiao, Demin Kong, Junfeng Wang","doi":"10.1007/s10278-025-01436-3","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound is widely used to monitor and diagnose thyroid nodules, but accurately segmenting these nodules in ultrasound images remains a challenge due to the presence of noise and artifacts, which often blur nodule boundaries. While several deep learning algorithms have been developed for this task, their performance is frequently suboptimal. In this study, we introduce the use of EfficientNet-B7 as the backbone for the DeepLabV3+ architecture in thyroid nodule segmentation, marking its first application in this area. We evaluated the proposed method using a dataset from the First Affiliated Hospital of Zhengzhou University, along with two public datasets. The results demonstrate high performance, with a pixel accuracy (PA) of 97.67%, a Dice similarity coefficient of 0.8839, and an Intersection over Union (IoU) of 79.69%. These outcomes outperform most traditional segmentation networks.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound Thyroid Nodule Segmentation Algorithm Based on DeepLabV3+ with EfficientNet.\",\"authors\":\"Nan Xiao, Demin Kong, Junfeng Wang\",\"doi\":\"10.1007/s10278-025-01436-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultrasound is widely used to monitor and diagnose thyroid nodules, but accurately segmenting these nodules in ultrasound images remains a challenge due to the presence of noise and artifacts, which often blur nodule boundaries. While several deep learning algorithms have been developed for this task, their performance is frequently suboptimal. In this study, we introduce the use of EfficientNet-B7 as the backbone for the DeepLabV3+ architecture in thyroid nodule segmentation, marking its first application in this area. We evaluated the proposed method using a dataset from the First Affiliated Hospital of Zhengzhou University, along with two public datasets. The results demonstrate high performance, with a pixel accuracy (PA) of 97.67%, a Dice similarity coefficient of 0.8839, and an Intersection over Union (IoU) of 79.69%. These outcomes outperform most traditional segmentation networks.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01436-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01436-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超声被广泛用于监测和诊断甲状腺结节,但由于存在噪声和伪影,经常模糊结节边界,因此在超声图像中准确分割这些结节仍然是一个挑战。虽然已经为这项任务开发了几种深度学习算法,但它们的性能往往不是最优的。在本研究中,我们介绍了将EfficientNet-B7作为DeepLabV3+架构在甲状腺结节分割中的骨干,这是DeepLabV3+架构在该领域的首次应用。我们使用郑州大学第一附属医院的数据集以及两个公共数据集来评估所提出的方法。结果表明,该方法具有良好的性能,像素精度(PA)为97.67%,Dice相似系数为0.8839,交集/联合(IoU)为79.69%。这些结果优于大多数传统的分割网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasound Thyroid Nodule Segmentation Algorithm Based on DeepLabV3+ with EfficientNet.

Ultrasound is widely used to monitor and diagnose thyroid nodules, but accurately segmenting these nodules in ultrasound images remains a challenge due to the presence of noise and artifacts, which often blur nodule boundaries. While several deep learning algorithms have been developed for this task, their performance is frequently suboptimal. In this study, we introduce the use of EfficientNet-B7 as the backbone for the DeepLabV3+ architecture in thyroid nodule segmentation, marking its first application in this area. We evaluated the proposed method using a dataset from the First Affiliated Hospital of Zhengzhou University, along with two public datasets. The results demonstrate high performance, with a pixel accuracy (PA) of 97.67%, a Dice similarity coefficient of 0.8839, and an Intersection over Union (IoU) of 79.69%. These outcomes outperform most traditional segmentation networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信