新生儿科偏倚风险评估中的 ChatGPT-4o - 有效性分析。

Neonatology Pub Date : 2025-02-25 DOI:10.1159/000544857
Ilari Kuitunen, Lauri Nyrhi, Daniele De Luca
{"title":"新生儿科偏倚风险评估中的 ChatGPT-4o - 有效性分析。","authors":"Ilari Kuitunen, Lauri Nyrhi, Daniele De Luca","doi":"10.1159/000544857","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Only a few studies have addressed the potential of large language models (LLMs) in risk-of-bias assessments and the results have been varying. The aim of this study was to analyze how well ChatGPT performs in risk-of-bias assessments of neonatal studies.</p><p><strong>Methods: </strong>We searched all Cochrane neonatal intervention reviews published in 2024 and extracted all risk-of-bias assessments. Then the full reports were retrieved and uploaded alongside the guidance to perform a Cochrane original risk-of-bias analysis in ChatGPT-4o. The concordance between the original assessment and that provided by ChatGPT-4o was evaluated by inter-class correlation coefficients and Cohen's kappa statistics (with 95% confidence intervals) for each risk-of-bias domain and for the overall assessment.</p><p><strong>Results: </strong>From 9 reviews, a total of 61 randomized studies were analyzed. A total of 427 judgments were compared. The overall κ was 0.43 (95% CI: 0.35-0.51) and the overall intraclass correlation coefficient was 0.65 (95% CI: 0.59-0.70). The Cohen's κ was assessed for each domain and the best agreement was observed in the allocation concealment (κ = 0.73, 95% CI: 0.55-0.90), whereas the poorest agreement was found in incomplete outcome data (κ = -0.03, 95% CI: -0.07-0.02).</p><p><strong>Conclusion: </strong>ChatGPT-4o failed to achieve sufficient agreement in the risk-of-bias assessments. Future studies should examine whether the performance of other LLM would be better or whether the agreement in ChatGPT-4o could be further enhanced by better prompting. Currently, the use of ChatGPT-4o in risk-of-bias assessments should not be promoted.</p>","PeriodicalId":94152,"journal":{"name":"Neonatology","volume":" ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ChatGPT-4o in Risk-of-Bias Assessments in Neonatology: A Validity Analysis.\",\"authors\":\"Ilari Kuitunen, Lauri Nyrhi, Daniele De Luca\",\"doi\":\"10.1159/000544857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Only a few studies have addressed the potential of large language models (LLMs) in risk-of-bias assessments and the results have been varying. The aim of this study was to analyze how well ChatGPT performs in risk-of-bias assessments of neonatal studies.</p><p><strong>Methods: </strong>We searched all Cochrane neonatal intervention reviews published in 2024 and extracted all risk-of-bias assessments. Then the full reports were retrieved and uploaded alongside the guidance to perform a Cochrane original risk-of-bias analysis in ChatGPT-4o. The concordance between the original assessment and that provided by ChatGPT-4o was evaluated by inter-class correlation coefficients and Cohen's kappa statistics (with 95% confidence intervals) for each risk-of-bias domain and for the overall assessment.</p><p><strong>Results: </strong>From 9 reviews, a total of 61 randomized studies were analyzed. A total of 427 judgments were compared. The overall κ was 0.43 (95% CI: 0.35-0.51) and the overall intraclass correlation coefficient was 0.65 (95% CI: 0.59-0.70). The Cohen's κ was assessed for each domain and the best agreement was observed in the allocation concealment (κ = 0.73, 95% CI: 0.55-0.90), whereas the poorest agreement was found in incomplete outcome data (κ = -0.03, 95% CI: -0.07-0.02).</p><p><strong>Conclusion: </strong>ChatGPT-4o failed to achieve sufficient agreement in the risk-of-bias assessments. Future studies should examine whether the performance of other LLM would be better or whether the agreement in ChatGPT-4o could be further enhanced by better prompting. Currently, the use of ChatGPT-4o in risk-of-bias assessments should not be promoted.</p>\",\"PeriodicalId\":94152,\"journal\":{\"name\":\"Neonatology\",\"volume\":\" \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neonatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000544857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neonatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000544857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
ChatGPT-4o in Risk-of-Bias Assessments in Neonatology: A Validity Analysis.

Introduction: Only a few studies have addressed the potential of large language models (LLMs) in risk-of-bias assessments and the results have been varying. The aim of this study was to analyze how well ChatGPT performs in risk-of-bias assessments of neonatal studies.

Methods: We searched all Cochrane neonatal intervention reviews published in 2024 and extracted all risk-of-bias assessments. Then the full reports were retrieved and uploaded alongside the guidance to perform a Cochrane original risk-of-bias analysis in ChatGPT-4o. The concordance between the original assessment and that provided by ChatGPT-4o was evaluated by inter-class correlation coefficients and Cohen's kappa statistics (with 95% confidence intervals) for each risk-of-bias domain and for the overall assessment.

Results: From 9 reviews, a total of 61 randomized studies were analyzed. A total of 427 judgments were compared. The overall κ was 0.43 (95% CI: 0.35-0.51) and the overall intraclass correlation coefficient was 0.65 (95% CI: 0.59-0.70). The Cohen's κ was assessed for each domain and the best agreement was observed in the allocation concealment (κ = 0.73, 95% CI: 0.55-0.90), whereas the poorest agreement was found in incomplete outcome data (κ = -0.03, 95% CI: -0.07-0.02).

Conclusion: ChatGPT-4o failed to achieve sufficient agreement in the risk-of-bias assessments. Future studies should examine whether the performance of other LLM would be better or whether the agreement in ChatGPT-4o could be further enhanced by better prompting. Currently, the use of ChatGPT-4o in risk-of-bias assessments should not be promoted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信