{"title":"单细胞多组学分析确定 SPP1+ 巨噬细胞是黄韧带肥厚中铁蛋白沉积介导的纤维化的关键驱动因素。","authors":"Chengshuo Fei, Yanlin Chen, Ruiqian Tan, Xinxing Yang, Guanda Wu, Chenglong Li, Jiawei Shi, Shiyong Le, Wenjie Yang, Jiajia Xu, Liang Wang, Zhongmin Zhang","doi":"10.1186/s40364-025-00746-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ligamentum flavum hypertrophy (LFH) is a primary contributor to lumbar spinal stenosis. However, a thorough understanding of the cellular and molecular mechanisms driving LFH fibrotic progression remains incomplete.</p><p><strong>Methods: </strong>Single-cell RNA sequencing (scRNA-seq) was performed to construct the single-cell map of human ligamentum flavum (LF) samples. An integrated multi-omics approach, encompassing scRNA-seq, bulk RNA sequencing (bulk RNA-seq), and Mendelian randomization (MR), was applied to conduct comprehensive functional analysis. Clinical tissue specimens and animal models were employed to further confirm the multi-omics findings.</p><p><strong>Results: </strong>ScRNA-seq provided a single-cell level view of the fibrotic microenvironment in LF, revealing significantly increased proportions of fibroblasts, myofibroblasts, and macrophages in LFH. Using transmission electron microscopy, single-cell gene set scoring, and MR analysis, ferroptosis was identified as a critical risk factor and pathway within LFH. Subcluster analysis of fibroblasts revealed functional heterogeneity among distinct subpopulations, highlighting the functional characteristics and the metabolic dynamics of fibroblast with a high ferroptosis score (High Ferro-score FB). The quantification of gene expression at single-cell level revealed that ferroptosis increased along with fibrosis in LFH specimens, a finding further validated in both human and mice tissue sections. Consistently, bulk RNA-seq confirmed increased proportions of fibroblasts and macrophages in LFH specimens, underscoring a strong correlation between these cell types through Spearman correlation analysis. Notably, subcluster analysis of the mononuclear phagocytes identified a specific subset of SPP1<sup>+</sup> macrophages (SPP1<sup>+</sup> Mac) enriched in LFH, which exhibited activation of fibrosis and ferroptosis-related metabolic pathways. Cell-cell communication analysis highlighted that SPP1<sup>+</sup> Mac exhibited the strongest outgoing and incoming interactions among mononuclear phagocytes in the LFH microenvironment. Ligand-receptor analysis further revealed that the SPP1-CD44 axis could serve as a key mediator regulating the activity of High Ferro-score FB. Multiplex immunofluorescence confirmed substantial Collagen I deposition and reduced Ferritin Light Chain expression in regions with SPP1-CD44 co-localization in LFH specimens.</p><p><strong>Conclusions: </strong>Our findings indicated that SPP1<sup>+</sup> Mac may contribute to LFH fibrosis by regulating ferroptosis in High Ferro-score FB through the SPP1-CD44 axis. This study enhances our understanding of the cellular and molecular mechanisms underlying LFH progression, potentially improving early diagnostic strategies and identifying new therapeutic targets.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"13 1","pages":"33"},"PeriodicalIF":9.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863437/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell multi-omics analysis identifies SPP1<sup>+</sup> macrophages as key drivers of ferroptosis-mediated fibrosis in ligamentum flavum hypertrophy.\",\"authors\":\"Chengshuo Fei, Yanlin Chen, Ruiqian Tan, Xinxing Yang, Guanda Wu, Chenglong Li, Jiawei Shi, Shiyong Le, Wenjie Yang, Jiajia Xu, Liang Wang, Zhongmin Zhang\",\"doi\":\"10.1186/s40364-025-00746-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ligamentum flavum hypertrophy (LFH) is a primary contributor to lumbar spinal stenosis. However, a thorough understanding of the cellular and molecular mechanisms driving LFH fibrotic progression remains incomplete.</p><p><strong>Methods: </strong>Single-cell RNA sequencing (scRNA-seq) was performed to construct the single-cell map of human ligamentum flavum (LF) samples. An integrated multi-omics approach, encompassing scRNA-seq, bulk RNA sequencing (bulk RNA-seq), and Mendelian randomization (MR), was applied to conduct comprehensive functional analysis. Clinical tissue specimens and animal models were employed to further confirm the multi-omics findings.</p><p><strong>Results: </strong>ScRNA-seq provided a single-cell level view of the fibrotic microenvironment in LF, revealing significantly increased proportions of fibroblasts, myofibroblasts, and macrophages in LFH. Using transmission electron microscopy, single-cell gene set scoring, and MR analysis, ferroptosis was identified as a critical risk factor and pathway within LFH. Subcluster analysis of fibroblasts revealed functional heterogeneity among distinct subpopulations, highlighting the functional characteristics and the metabolic dynamics of fibroblast with a high ferroptosis score (High Ferro-score FB). The quantification of gene expression at single-cell level revealed that ferroptosis increased along with fibrosis in LFH specimens, a finding further validated in both human and mice tissue sections. Consistently, bulk RNA-seq confirmed increased proportions of fibroblasts and macrophages in LFH specimens, underscoring a strong correlation between these cell types through Spearman correlation analysis. Notably, subcluster analysis of the mononuclear phagocytes identified a specific subset of SPP1<sup>+</sup> macrophages (SPP1<sup>+</sup> Mac) enriched in LFH, which exhibited activation of fibrosis and ferroptosis-related metabolic pathways. Cell-cell communication analysis highlighted that SPP1<sup>+</sup> Mac exhibited the strongest outgoing and incoming interactions among mononuclear phagocytes in the LFH microenvironment. Ligand-receptor analysis further revealed that the SPP1-CD44 axis could serve as a key mediator regulating the activity of High Ferro-score FB. Multiplex immunofluorescence confirmed substantial Collagen I deposition and reduced Ferritin Light Chain expression in regions with SPP1-CD44 co-localization in LFH specimens.</p><p><strong>Conclusions: </strong>Our findings indicated that SPP1<sup>+</sup> Mac may contribute to LFH fibrosis by regulating ferroptosis in High Ferro-score FB through the SPP1-CD44 axis. This study enhances our understanding of the cellular and molecular mechanisms underlying LFH progression, potentially improving early diagnostic strategies and identifying new therapeutic targets.</p>\",\"PeriodicalId\":54225,\"journal\":{\"name\":\"Biomarker Research\",\"volume\":\"13 1\",\"pages\":\"33\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863437/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomarker Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40364-025-00746-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-025-00746-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Single-cell multi-omics analysis identifies SPP1+ macrophages as key drivers of ferroptosis-mediated fibrosis in ligamentum flavum hypertrophy.
Background: Ligamentum flavum hypertrophy (LFH) is a primary contributor to lumbar spinal stenosis. However, a thorough understanding of the cellular and molecular mechanisms driving LFH fibrotic progression remains incomplete.
Methods: Single-cell RNA sequencing (scRNA-seq) was performed to construct the single-cell map of human ligamentum flavum (LF) samples. An integrated multi-omics approach, encompassing scRNA-seq, bulk RNA sequencing (bulk RNA-seq), and Mendelian randomization (MR), was applied to conduct comprehensive functional analysis. Clinical tissue specimens and animal models were employed to further confirm the multi-omics findings.
Results: ScRNA-seq provided a single-cell level view of the fibrotic microenvironment in LF, revealing significantly increased proportions of fibroblasts, myofibroblasts, and macrophages in LFH. Using transmission electron microscopy, single-cell gene set scoring, and MR analysis, ferroptosis was identified as a critical risk factor and pathway within LFH. Subcluster analysis of fibroblasts revealed functional heterogeneity among distinct subpopulations, highlighting the functional characteristics and the metabolic dynamics of fibroblast with a high ferroptosis score (High Ferro-score FB). The quantification of gene expression at single-cell level revealed that ferroptosis increased along with fibrosis in LFH specimens, a finding further validated in both human and mice tissue sections. Consistently, bulk RNA-seq confirmed increased proportions of fibroblasts and macrophages in LFH specimens, underscoring a strong correlation between these cell types through Spearman correlation analysis. Notably, subcluster analysis of the mononuclear phagocytes identified a specific subset of SPP1+ macrophages (SPP1+ Mac) enriched in LFH, which exhibited activation of fibrosis and ferroptosis-related metabolic pathways. Cell-cell communication analysis highlighted that SPP1+ Mac exhibited the strongest outgoing and incoming interactions among mononuclear phagocytes in the LFH microenvironment. Ligand-receptor analysis further revealed that the SPP1-CD44 axis could serve as a key mediator regulating the activity of High Ferro-score FB. Multiplex immunofluorescence confirmed substantial Collagen I deposition and reduced Ferritin Light Chain expression in regions with SPP1-CD44 co-localization in LFH specimens.
Conclusions: Our findings indicated that SPP1+ Mac may contribute to LFH fibrosis by regulating ferroptosis in High Ferro-score FB through the SPP1-CD44 axis. This study enhances our understanding of the cellular and molecular mechanisms underlying LFH progression, potentially improving early diagnostic strategies and identifying new therapeutic targets.
Biomarker ResearchBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍:
Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.