{"title":"解码乳腺癌成像趋势:通过文献计量学洞察人工智能和放射组学的作用。","authors":"Xinyu Wu, Yufei Xia, Xinjing Lou, Keling Huang, Linyu Wu, Chen Gao","doi":"10.1186/s13058-025-01983-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiomics and AI have been widely used in breast cancer imaging, but a comprehensive systematic analysis is lacking. Therefore, this study aims to conduct a bibliometrics analysis in this field to discuss its research status and frontier hotspots and provide a reference for subsequent research.</p><p><strong>Methods: </strong>Publications related to AI, radiomics, and breast cancer imaging were searched in the Web of Science Core Collection. CiteSpace plotted the relevant co-occurrence network according to authors and keywords. VOSviewer and Pajek were used to draw relevant co-occurrence maps according to country and institution. In addition, R was used to conduct bibliometric analysis of relevant authors, countries/regions, journals, keywords, and annual publications and citations based on the collected information.</p><p><strong>Results: </strong>A total of 2,701 Web of Science Core Collection publications were retrieved, including 2,486 articles (92.04%) and 215 reviews (7.96%). The number of publications increased rapidly after 2018. The United States of America (n = 17,762) leads in citations, while China (n = 902) leads in the number of publications. Sun Yat-sen University (n = 75) had the largest number of publications. Bin Zheng (n = 28) was the most published author. Nico Karssemeijer (n = 72.1429) was the author with the highest average citations. \"Frontiers in Oncology\" was the journal with the most publications, and \"Radiology\" had the highest IF. The keywords with the most frequent occurrence were \"breast cancer\", \"deep learning\", and \"classification\". The topic trends in recent years were \"explainable AI\", \"neoadjuvant chemotherapy\", and \"lymphovascular invasion\".</p><p><strong>Conclusion: </strong>The application of radiomics and AI in breast cancer imaging has received extensive attention. Future research hotspots may mainly focus on the progress of explainable AI in the technical field and the prediction of lymphovascular invasion and neoadjuvant chemotherapy efficacy in clinical application.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"27 1","pages":"29"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding breast cancer imaging trends: the role of AI and radiomics through bibliometric insights.\",\"authors\":\"Xinyu Wu, Yufei Xia, Xinjing Lou, Keling Huang, Linyu Wu, Chen Gao\",\"doi\":\"10.1186/s13058-025-01983-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Radiomics and AI have been widely used in breast cancer imaging, but a comprehensive systematic analysis is lacking. Therefore, this study aims to conduct a bibliometrics analysis in this field to discuss its research status and frontier hotspots and provide a reference for subsequent research.</p><p><strong>Methods: </strong>Publications related to AI, radiomics, and breast cancer imaging were searched in the Web of Science Core Collection. CiteSpace plotted the relevant co-occurrence network according to authors and keywords. VOSviewer and Pajek were used to draw relevant co-occurrence maps according to country and institution. In addition, R was used to conduct bibliometric analysis of relevant authors, countries/regions, journals, keywords, and annual publications and citations based on the collected information.</p><p><strong>Results: </strong>A total of 2,701 Web of Science Core Collection publications were retrieved, including 2,486 articles (92.04%) and 215 reviews (7.96%). The number of publications increased rapidly after 2018. The United States of America (n = 17,762) leads in citations, while China (n = 902) leads in the number of publications. Sun Yat-sen University (n = 75) had the largest number of publications. Bin Zheng (n = 28) was the most published author. Nico Karssemeijer (n = 72.1429) was the author with the highest average citations. \\\"Frontiers in Oncology\\\" was the journal with the most publications, and \\\"Radiology\\\" had the highest IF. The keywords with the most frequent occurrence were \\\"breast cancer\\\", \\\"deep learning\\\", and \\\"classification\\\". The topic trends in recent years were \\\"explainable AI\\\", \\\"neoadjuvant chemotherapy\\\", and \\\"lymphovascular invasion\\\".</p><p><strong>Conclusion: </strong>The application of radiomics and AI in breast cancer imaging has received extensive attention. Future research hotspots may mainly focus on the progress of explainable AI in the technical field and the prediction of lymphovascular invasion and neoadjuvant chemotherapy efficacy in clinical application.</p>\",\"PeriodicalId\":49227,\"journal\":{\"name\":\"Breast Cancer Research\",\"volume\":\"27 1\",\"pages\":\"29\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13058-025-01983-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-025-01983-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Decoding breast cancer imaging trends: the role of AI and radiomics through bibliometric insights.
Background: Radiomics and AI have been widely used in breast cancer imaging, but a comprehensive systematic analysis is lacking. Therefore, this study aims to conduct a bibliometrics analysis in this field to discuss its research status and frontier hotspots and provide a reference for subsequent research.
Methods: Publications related to AI, radiomics, and breast cancer imaging were searched in the Web of Science Core Collection. CiteSpace plotted the relevant co-occurrence network according to authors and keywords. VOSviewer and Pajek were used to draw relevant co-occurrence maps according to country and institution. In addition, R was used to conduct bibliometric analysis of relevant authors, countries/regions, journals, keywords, and annual publications and citations based on the collected information.
Results: A total of 2,701 Web of Science Core Collection publications were retrieved, including 2,486 articles (92.04%) and 215 reviews (7.96%). The number of publications increased rapidly after 2018. The United States of America (n = 17,762) leads in citations, while China (n = 902) leads in the number of publications. Sun Yat-sen University (n = 75) had the largest number of publications. Bin Zheng (n = 28) was the most published author. Nico Karssemeijer (n = 72.1429) was the author with the highest average citations. "Frontiers in Oncology" was the journal with the most publications, and "Radiology" had the highest IF. The keywords with the most frequent occurrence were "breast cancer", "deep learning", and "classification". The topic trends in recent years were "explainable AI", "neoadjuvant chemotherapy", and "lymphovascular invasion".
Conclusion: The application of radiomics and AI in breast cancer imaging has received extensive attention. Future research hotspots may mainly focus on the progress of explainable AI in the technical field and the prediction of lymphovascular invasion and neoadjuvant chemotherapy efficacy in clinical application.
期刊介绍:
Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.