[基于面部视频的非接触式心率测量深度学习方法综述]。

Q4 Medicine
Shuyue Guan, Yimou Lyu, Yongchun Li, Chengzhi Xia, Lin Qi, Lisheng Xu
{"title":"[基于面部视频的非接触式心率测量深度学习方法综述]。","authors":"Shuyue Guan, Yimou Lyu, Yongchun Li, Chengzhi Xia, Lin Qi, Lisheng Xu","doi":"10.7507/1001-5515.202405057","DOIUrl":null,"url":null,"abstract":"<p><p>Heart rate is a crucial indicator of human health with significant physiological importance. Traditional contact methods for measuring heart rate, such as electrocardiograph or wristbands, may not always meet the need for convenient health monitoring. Remote photoplethysmography (rPPG) provides a non-contact method for measuring heart rate and other physiological indicators by analyzing blood volume pulse signals. This approach is non-invasive, does not require direct contact, and allows for long-term healthcare monitoring. Deep learning has emerged as a powerful tool for processing complex image and video data, and has been increasingly employed to extract heart rate signals remotely. This article reviewed the latest research advancements in rPPG-based heart rate measurement using deep learning, summarized available public datasets, and explored future research directions and potential advancements in non-contact heart rate measurement.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 1","pages":"197-204"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955325/pdf/","citationCount":"0","resultStr":"{\"title\":\"[A review of deep learning methods for non-contact heart rate measurement based on facial videos].\",\"authors\":\"Shuyue Guan, Yimou Lyu, Yongchun Li, Chengzhi Xia, Lin Qi, Lisheng Xu\",\"doi\":\"10.7507/1001-5515.202405057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart rate is a crucial indicator of human health with significant physiological importance. Traditional contact methods for measuring heart rate, such as electrocardiograph or wristbands, may not always meet the need for convenient health monitoring. Remote photoplethysmography (rPPG) provides a non-contact method for measuring heart rate and other physiological indicators by analyzing blood volume pulse signals. This approach is non-invasive, does not require direct contact, and allows for long-term healthcare monitoring. Deep learning has emerged as a powerful tool for processing complex image and video data, and has been increasingly employed to extract heart rate signals remotely. This article reviewed the latest research advancements in rPPG-based heart rate measurement using deep learning, summarized available public datasets, and explored future research directions and potential advancements in non-contact heart rate measurement.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":\"42 1\",\"pages\":\"197-204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955325/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202405057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202405057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

心率是人体健康的重要指标,具有重要的生理意义。传统的接触式测量心率的方法,如心电图仪或腕带,可能并不总是满足方便的健康监测的需要。远程光容积脉搏波描记(rPPG)通过分析血容量脉搏信号,提供了一种非接触式测量心率等生理指标的方法。这种方法是非侵入性的,不需要直接接触,并且允许长期的医疗监控。深度学习已经成为处理复杂图像和视频数据的强大工具,并越来越多地用于远程提取心率信号。本文综述了基于rppg的深度学习心率测量的最新研究进展,总结了现有的公共数据集,并探讨了非接触式心率测量的未来研究方向和潜在进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[A review of deep learning methods for non-contact heart rate measurement based on facial videos].

Heart rate is a crucial indicator of human health with significant physiological importance. Traditional contact methods for measuring heart rate, such as electrocardiograph or wristbands, may not always meet the need for convenient health monitoring. Remote photoplethysmography (rPPG) provides a non-contact method for measuring heart rate and other physiological indicators by analyzing blood volume pulse signals. This approach is non-invasive, does not require direct contact, and allows for long-term healthcare monitoring. Deep learning has emerged as a powerful tool for processing complex image and video data, and has been increasingly employed to extract heart rate signals remotely. This article reviewed the latest research advancements in rPPG-based heart rate measurement using deep learning, summarized available public datasets, and explored future research directions and potential advancements in non-contact heart rate measurement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信