塞内卡谷病毒感染利用DNA损伤反应促进病毒复制。

IF 4 2区 医学 Q2 VIROLOGY
Journal of Virology Pub Date : 2025-03-18 Epub Date: 2025-02-26 DOI:10.1128/jvi.02211-24
Jiangwei Song, Zijian Li, Jingjing Yang, Ruiyi Ma, Dan Wang, Rong Quan, Xuexia Wen, Jue Liu
{"title":"塞内卡谷病毒感染利用DNA损伤反应促进病毒复制。","authors":"Jiangwei Song, Zijian Li, Jingjing Yang, Ruiyi Ma, Dan Wang, Rong Quan, Xuexia Wen, Jue Liu","doi":"10.1128/jvi.02211-24","DOIUrl":null,"url":null,"abstract":"<p><p>Seneca Valley virus (SVV) is an emerging pathogen that causes severe vesicular diseases in swine, posing a significant threat to the global pork industry. DNA and RNA viruses manipulate the host DNA damage response (DDR) to modulate cellular machinery and facilitate their life cycles. However, the interaction between the host DDR and SVV infection remains unexplored. Here, we aimed to comprehensively investigate the DDR and DNA repair signaling pathways during SVV infection. We found that SVV infection causes DNA damage and triggers distinct DDR signaling pathways, including ataxia telangiectasia-mutated (ATM) kinase, ATM-Rad3-related kinase, and DNA-dependent protein kinase. However, it failed to induce the formation of γH2AX and 53BP1 foci, resulting in unrepaired DNA damage. Furthermore, we found that SVV 2B and 2C proteins can activate DDR signaling pathways and impair DNA repair. SVV-induced DDR triggered NF-κB signaling accompanied by upregulation of pro-inflammatory cytokines, as evidenced by the inhibition of ATM kinase, abolished SVV-induced NF-κB activation. Inhibition of the ATM pathway attenuated SVV replication. These findings expand our understanding of host DDR manipulation during viral infection and provide crucial insights into a novel mechanism exploited by SVV to regulate the inflammatory response for efficient replication.IMPORTANCEDDR is a cellular machinery that senses and repairs host DNA lesions to maintain genome integrity. Viruses have evolved diverse strategies to manipulate host DDR for replicative efficiency. SVV is an emerging virus that causes vesicular diseases in pigs and severely threatens the swine industry. However, the interaction between SVV and DDR remains unclear. Here, we found that SVV modulates host DDR pathways to facilitate viral replication. Our results demonstrated that SVV infection causes DNA damage, activates ATM-mediated DNA double-strand break response, and impedes DNA repair. SVV 2B and 2C proteins induced DNA damage and activated the DDR pathway while impairing repair mechanisms. This study revealed a fine-tuned molecular mechanism of SVV-modulated DDR that contributes to viral replication, facilitating deeper insight into SVV replication.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0221124"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915816/pdf/","citationCount":"0","resultStr":"{\"title\":\"Seneca Valley virus infection exploits DNA damage response to facilitate viral replication.\",\"authors\":\"Jiangwei Song, Zijian Li, Jingjing Yang, Ruiyi Ma, Dan Wang, Rong Quan, Xuexia Wen, Jue Liu\",\"doi\":\"10.1128/jvi.02211-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seneca Valley virus (SVV) is an emerging pathogen that causes severe vesicular diseases in swine, posing a significant threat to the global pork industry. DNA and RNA viruses manipulate the host DNA damage response (DDR) to modulate cellular machinery and facilitate their life cycles. However, the interaction between the host DDR and SVV infection remains unexplored. Here, we aimed to comprehensively investigate the DDR and DNA repair signaling pathways during SVV infection. We found that SVV infection causes DNA damage and triggers distinct DDR signaling pathways, including ataxia telangiectasia-mutated (ATM) kinase, ATM-Rad3-related kinase, and DNA-dependent protein kinase. However, it failed to induce the formation of γH2AX and 53BP1 foci, resulting in unrepaired DNA damage. Furthermore, we found that SVV 2B and 2C proteins can activate DDR signaling pathways and impair DNA repair. SVV-induced DDR triggered NF-κB signaling accompanied by upregulation of pro-inflammatory cytokines, as evidenced by the inhibition of ATM kinase, abolished SVV-induced NF-κB activation. Inhibition of the ATM pathway attenuated SVV replication. These findings expand our understanding of host DDR manipulation during viral infection and provide crucial insights into a novel mechanism exploited by SVV to regulate the inflammatory response for efficient replication.IMPORTANCEDDR is a cellular machinery that senses and repairs host DNA lesions to maintain genome integrity. Viruses have evolved diverse strategies to manipulate host DDR for replicative efficiency. SVV is an emerging virus that causes vesicular diseases in pigs and severely threatens the swine industry. However, the interaction between SVV and DDR remains unclear. Here, we found that SVV modulates host DDR pathways to facilitate viral replication. Our results demonstrated that SVV infection causes DNA damage, activates ATM-mediated DNA double-strand break response, and impedes DNA repair. SVV 2B and 2C proteins induced DNA damage and activated the DDR pathway while impairing repair mechanisms. This study revealed a fine-tuned molecular mechanism of SVV-modulated DDR that contributes to viral replication, facilitating deeper insight into SVV replication.</p>\",\"PeriodicalId\":17583,\"journal\":{\"name\":\"Journal of Virology\",\"volume\":\" \",\"pages\":\"e0221124\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915816/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jvi.02211-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.02211-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

塞内卡谷病毒(SVV)是一种引起猪严重水疱性疾病的新兴病原体,对全球猪肉产业构成重大威胁。DNA和RNA病毒操纵宿主DNA损伤反应(DDR)来调节细胞机制并促进其生命周期。然而,宿主DDR和SVV感染之间的相互作用仍未被探索。在此,我们旨在全面研究SVV感染过程中的DDR和DNA修复信号通路。我们发现SVV感染导致DNA损伤并触发不同的DDR信号通路,包括共济失调毛细血管扩张突变(ATM)激酶、ATM- rad3相关激酶和DNA依赖性蛋白激酶。但未能诱导γ - h2ax和53BP1灶的形成,导致DNA损伤未修复。此外,我们发现SVV 2B和2C蛋白可以激活DDR信号通路并损害DNA修复。svv诱导的DDR触发NF-κB信号,并伴有促炎细胞因子的上调,通过抑制ATM激酶证实,svv诱导的NF-κB活化被消除。抑制ATM通路可减弱SVV的复制。这些发现扩大了我们对病毒感染期间宿主DDR操作的理解,并为SVV利用新机制调节炎症反应以实现有效复制提供了重要见解。dr是一种感知和修复宿主DNA损伤以维持基因组完整性的细胞机制。病毒已经进化出多种策略来操纵宿主DDR以提高复制效率。SVV是一种引起猪水疱病的新兴病毒,严重威胁养猪业。然而,SVV和DDR之间的相互作用尚不清楚。在这里,我们发现SVV调节宿主DDR通路以促进病毒复制。我们的研究结果表明,SVV感染引起DNA损伤,激活atm介导的DNA双链断裂反应,并阻碍DNA修复。SVV 2B和2C蛋白诱导DNA损伤并激活DDR通路,同时损害修复机制。本研究揭示了SVV调控的DDR促进病毒复制的精细分子机制,有助于深入了解SVV复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seneca Valley virus infection exploits DNA damage response to facilitate viral replication.

Seneca Valley virus (SVV) is an emerging pathogen that causes severe vesicular diseases in swine, posing a significant threat to the global pork industry. DNA and RNA viruses manipulate the host DNA damage response (DDR) to modulate cellular machinery and facilitate their life cycles. However, the interaction between the host DDR and SVV infection remains unexplored. Here, we aimed to comprehensively investigate the DDR and DNA repair signaling pathways during SVV infection. We found that SVV infection causes DNA damage and triggers distinct DDR signaling pathways, including ataxia telangiectasia-mutated (ATM) kinase, ATM-Rad3-related kinase, and DNA-dependent protein kinase. However, it failed to induce the formation of γH2AX and 53BP1 foci, resulting in unrepaired DNA damage. Furthermore, we found that SVV 2B and 2C proteins can activate DDR signaling pathways and impair DNA repair. SVV-induced DDR triggered NF-κB signaling accompanied by upregulation of pro-inflammatory cytokines, as evidenced by the inhibition of ATM kinase, abolished SVV-induced NF-κB activation. Inhibition of the ATM pathway attenuated SVV replication. These findings expand our understanding of host DDR manipulation during viral infection and provide crucial insights into a novel mechanism exploited by SVV to regulate the inflammatory response for efficient replication.IMPORTANCEDDR is a cellular machinery that senses and repairs host DNA lesions to maintain genome integrity. Viruses have evolved diverse strategies to manipulate host DDR for replicative efficiency. SVV is an emerging virus that causes vesicular diseases in pigs and severely threatens the swine industry. However, the interaction between SVV and DDR remains unclear. Here, we found that SVV modulates host DDR pathways to facilitate viral replication. Our results demonstrated that SVV infection causes DNA damage, activates ATM-mediated DNA double-strand break response, and impedes DNA repair. SVV 2B and 2C proteins induced DNA damage and activated the DDR pathway while impairing repair mechanisms. This study revealed a fine-tuned molecular mechanism of SVV-modulated DDR that contributes to viral replication, facilitating deeper insight into SVV replication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信