无网状蛋白定量骨髓纤维化在mpn:效用和应用

EJHaem Pub Date : 2025-02-27 DOI:10.1002/jha2.70005
Hosuk Ryou, Emily Thomas, Marta Wojciechowska, Laura Harding, Ka Ho Tam, Ruoyu Wang, Xuezi Hu, Jens Rittscher, Rosalin Cooper, Daniel Royston
{"title":"无网状蛋白定量骨髓纤维化在mpn:效用和应用","authors":"Hosuk Ryou,&nbsp;Emily Thomas,&nbsp;Marta Wojciechowska,&nbsp;Laura Harding,&nbsp;Ka Ho Tam,&nbsp;Ruoyu Wang,&nbsp;Xuezi Hu,&nbsp;Jens Rittscher,&nbsp;Rosalin Cooper,&nbsp;Daniel Royston","doi":"10.1002/jha2.70005","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Automated quantitation of marrow fibrosis promises to improve fibrosis assessment in myeloproliferative neoplasms (MPNs). However, analysis of reticulin-stained images is complicated by technical challenges within laboratories and variability between institutions.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We have developed a machine learning model that can quantitatively assess fibrosis directly from H&amp;E-stained bone marrow trephine tissue sections.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our haematoxylin and eosin (H&amp;E)-based fibrosis quantitation model demonstrates comparable performance to an existing reticulin-stained model (Continuous Indexing of Fibrosis [CIF]) while benefitting from the improved tissue retention and staining characteristics of H&amp;E-stained sections.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>H&amp;E-derived quantitative marrow fibrosis has potential to augment routine practice and clinical trials while supporting the emerging field of spatial multi-omic analysis.</p>\n </section>\n </div>","PeriodicalId":72883,"journal":{"name":"EJHaem","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jha2.70005","citationCount":"0","resultStr":"{\"title\":\"Reticulin-Free Quantitation of Bone Marrow Fibrosis in MPNs: Utility and Applications\",\"authors\":\"Hosuk Ryou,&nbsp;Emily Thomas,&nbsp;Marta Wojciechowska,&nbsp;Laura Harding,&nbsp;Ka Ho Tam,&nbsp;Ruoyu Wang,&nbsp;Xuezi Hu,&nbsp;Jens Rittscher,&nbsp;Rosalin Cooper,&nbsp;Daniel Royston\",\"doi\":\"10.1002/jha2.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Automated quantitation of marrow fibrosis promises to improve fibrosis assessment in myeloproliferative neoplasms (MPNs). However, analysis of reticulin-stained images is complicated by technical challenges within laboratories and variability between institutions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We have developed a machine learning model that can quantitatively assess fibrosis directly from H&amp;E-stained bone marrow trephine tissue sections.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Our haematoxylin and eosin (H&amp;E)-based fibrosis quantitation model demonstrates comparable performance to an existing reticulin-stained model (Continuous Indexing of Fibrosis [CIF]) while benefitting from the improved tissue retention and staining characteristics of H&amp;E-stained sections.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>H&amp;E-derived quantitative marrow fibrosis has potential to augment routine practice and clinical trials while supporting the emerging field of spatial multi-omic analysis.</p>\\n </section>\\n </div>\",\"PeriodicalId\":72883,\"journal\":{\"name\":\"EJHaem\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jha2.70005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJHaem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jha2.70005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJHaem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jha2.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨髓纤维化的自动定量测定有望改善骨髓增生性肿瘤(mpn)的纤维化评估。然而,由于实验室内部的技术挑战和机构之间的差异,网状蛋白染色图像的分析变得复杂。我们开发了一种机器学习模型,可以直接从H&; e染色的骨髓环钻组织切片定量评估纤维化。我们基于血红素和伊红(H&;E)的纤维化定量模型的性能与现有的网状蛋白染色模型(连续纤维化指数[CIF])相当,同时受益于H&;E染色切片改善的组织保留和染色特性。结论:H&; e来源的定量骨髓纤维化具有增强常规实践和临床试验的潜力,同时支持新兴的空间多组学分析领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reticulin-Free Quantitation of Bone Marrow Fibrosis in MPNs: Utility and Applications

Reticulin-Free Quantitation of Bone Marrow Fibrosis in MPNs: Utility and Applications

Background

Automated quantitation of marrow fibrosis promises to improve fibrosis assessment in myeloproliferative neoplasms (MPNs). However, analysis of reticulin-stained images is complicated by technical challenges within laboratories and variability between institutions.

Methods

We have developed a machine learning model that can quantitatively assess fibrosis directly from H&E-stained bone marrow trephine tissue sections.

Results

Our haematoxylin and eosin (H&E)-based fibrosis quantitation model demonstrates comparable performance to an existing reticulin-stained model (Continuous Indexing of Fibrosis [CIF]) while benefitting from the improved tissue retention and staining characteristics of H&E-stained sections.

Conclusions

H&E-derived quantitative marrow fibrosis has potential to augment routine practice and clinical trials while supporting the emerging field of spatial multi-omic analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信