Merle Skribbe, Charlotte Soneson, Michael B. Stadler, Michaela Schwaiger, Vishnu N. Suma Sreechakram, Vytautas Iesmantavicius, Daniel Hess, Eliza Pandini Figueiredo Moreno, Sigurd Braun, Jan Seebacher, Sebastien A. Smallwood, Marc Bühler
{"title":"一个全面的裂糖菌的物理转录因子与蛋白质和染色质相互作用图谱","authors":"Merle Skribbe, Charlotte Soneson, Michael B. Stadler, Michaela Schwaiger, Vishnu N. Suma Sreechakram, Vytautas Iesmantavicius, Daniel Hess, Eliza Pandini Figueiredo Moreno, Sigurd Braun, Jan Seebacher, Sebastien A. Smallwood, Marc Bühler","doi":"10.1016/j.molcel.2025.01.032","DOIUrl":null,"url":null,"abstract":"Transcription factors (TFs) are key regulators of gene expression, yet many of their targets and modes of action remain unknown. In <em>Schizosaccharomyces pombe</em>, one-third of TFs are solely homology predicted, with few experimentally validated. We created a comprehensive library of 89 endogenously tagged <em>S. pombe</em> TFs, mapping their protein and chromatin interactions using immunoprecipitation-mass spectrometry and chromatin immunoprecipitation sequencing. Our study identified protein interactors for half the TFs, with over a quarter potentially forming stable complexes. We discovered DNA-binding sites for most TFs across 2,027 unique genomic regions, revealing motifs for 38 TFs and uncovering a complex network of extensive TF cross- and autoregulation. Characterization of the largest TF family revealed conserved DNA sequence preferences but diverse binding patterns and identified a repressive heterodimer, Ntu1/Ntu2, linked to perinuclear gene localization. Our TFexplorer webtool makes all data interactively accessible, offering insights into TF interactions and regulatory mechanisms with broad biological relevance.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"36 1 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive Schizosaccharomyces pombe atlas of physical transcription factor interactions with proteins and chromatin\",\"authors\":\"Merle Skribbe, Charlotte Soneson, Michael B. Stadler, Michaela Schwaiger, Vishnu N. Suma Sreechakram, Vytautas Iesmantavicius, Daniel Hess, Eliza Pandini Figueiredo Moreno, Sigurd Braun, Jan Seebacher, Sebastien A. Smallwood, Marc Bühler\",\"doi\":\"10.1016/j.molcel.2025.01.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transcription factors (TFs) are key regulators of gene expression, yet many of their targets and modes of action remain unknown. In <em>Schizosaccharomyces pombe</em>, one-third of TFs are solely homology predicted, with few experimentally validated. We created a comprehensive library of 89 endogenously tagged <em>S. pombe</em> TFs, mapping their protein and chromatin interactions using immunoprecipitation-mass spectrometry and chromatin immunoprecipitation sequencing. Our study identified protein interactors for half the TFs, with over a quarter potentially forming stable complexes. We discovered DNA-binding sites for most TFs across 2,027 unique genomic regions, revealing motifs for 38 TFs and uncovering a complex network of extensive TF cross- and autoregulation. Characterization of the largest TF family revealed conserved DNA sequence preferences but diverse binding patterns and identified a repressive heterodimer, Ntu1/Ntu2, linked to perinuclear gene localization. Our TFexplorer webtool makes all data interactively accessible, offering insights into TF interactions and regulatory mechanisms with broad biological relevance.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"36 1 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2025.01.032\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.01.032","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A comprehensive Schizosaccharomyces pombe atlas of physical transcription factor interactions with proteins and chromatin
Transcription factors (TFs) are key regulators of gene expression, yet many of their targets and modes of action remain unknown. In Schizosaccharomyces pombe, one-third of TFs are solely homology predicted, with few experimentally validated. We created a comprehensive library of 89 endogenously tagged S. pombe TFs, mapping their protein and chromatin interactions using immunoprecipitation-mass spectrometry and chromatin immunoprecipitation sequencing. Our study identified protein interactors for half the TFs, with over a quarter potentially forming stable complexes. We discovered DNA-binding sites for most TFs across 2,027 unique genomic regions, revealing motifs for 38 TFs and uncovering a complex network of extensive TF cross- and autoregulation. Characterization of the largest TF family revealed conserved DNA sequence preferences but diverse binding patterns and identified a repressive heterodimer, Ntu1/Ntu2, linked to perinuclear gene localization. Our TFexplorer webtool makes all data interactively accessible, offering insights into TF interactions and regulatory mechanisms with broad biological relevance.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.