Milan Tripathi, Waree Kongprawechnon, Toshiaki Kondo
{"title":"具有多尺度特征增强和注意门的高鲁棒性编码器-解码器网络,用于降低数字图像中的混合高斯和椒盐噪声","authors":"Milan Tripathi, Waree Kongprawechnon, Toshiaki Kondo","doi":"10.3390/jimaging11020051","DOIUrl":null,"url":null,"abstract":"<p><p>Image denoising is crucial for correcting distortions caused by environmental factors and technical limitations. We propose a novel and highly robust encoder-decoder network (HREDN) for effectively removing mixed salt-and-pepper and Gaussian noise from digital images. HREDN integrates a multi-scale feature enhancement block in the encoder, allowing the network to capture features at various scales and handle complex noise patterns more effectively. To mitigate information loss during encoding, skip connections transfer essential feature maps from the encoder to the decoder, preserving structural details. However, skip connections can also propagate redundant information. To address this, we incorporate attention gates within the skip connections, ensuring that only relevant features are passed to the decoding layers. We evaluate the robustness of the proposed method across facial, medical, and remote sensing domains. The experimental results demonstrate that HREDN excels in preserving edge details and structural features in denoised images, outperforming state-of-the-art techniques in both qualitative and quantitative measures. Statistical analysis further highlights the model's ability to effectively remove noise in diverse, complex scenarios with images of varying resolutions across multiple domains.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856137/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Highly Robust Encoder-Decoder Network with Multi-Scale Feature Enhancement and Attention Gate for the Reduction of Mixed Gaussian and Salt-and-Pepper Noise in Digital Images.\",\"authors\":\"Milan Tripathi, Waree Kongprawechnon, Toshiaki Kondo\",\"doi\":\"10.3390/jimaging11020051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image denoising is crucial for correcting distortions caused by environmental factors and technical limitations. We propose a novel and highly robust encoder-decoder network (HREDN) for effectively removing mixed salt-and-pepper and Gaussian noise from digital images. HREDN integrates a multi-scale feature enhancement block in the encoder, allowing the network to capture features at various scales and handle complex noise patterns more effectively. To mitigate information loss during encoding, skip connections transfer essential feature maps from the encoder to the decoder, preserving structural details. However, skip connections can also propagate redundant information. To address this, we incorporate attention gates within the skip connections, ensuring that only relevant features are passed to the decoding layers. We evaluate the robustness of the proposed method across facial, medical, and remote sensing domains. The experimental results demonstrate that HREDN excels in preserving edge details and structural features in denoised images, outperforming state-of-the-art techniques in both qualitative and quantitative measures. Statistical analysis further highlights the model's ability to effectively remove noise in diverse, complex scenarios with images of varying resolutions across multiple domains.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856137/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11020051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
A Highly Robust Encoder-Decoder Network with Multi-Scale Feature Enhancement and Attention Gate for the Reduction of Mixed Gaussian and Salt-and-Pepper Noise in Digital Images.
Image denoising is crucial for correcting distortions caused by environmental factors and technical limitations. We propose a novel and highly robust encoder-decoder network (HREDN) for effectively removing mixed salt-and-pepper and Gaussian noise from digital images. HREDN integrates a multi-scale feature enhancement block in the encoder, allowing the network to capture features at various scales and handle complex noise patterns more effectively. To mitigate information loss during encoding, skip connections transfer essential feature maps from the encoder to the decoder, preserving structural details. However, skip connections can also propagate redundant information. To address this, we incorporate attention gates within the skip connections, ensuring that only relevant features are passed to the decoding layers. We evaluate the robustness of the proposed method across facial, medical, and remote sensing domains. The experimental results demonstrate that HREDN excels in preserving edge details and structural features in denoised images, outperforming state-of-the-art techniques in both qualitative and quantitative measures. Statistical analysis further highlights the model's ability to effectively remove noise in diverse, complex scenarios with images of varying resolutions across multiple domains.