探讨蛋白激酶A在白色念珠菌中的差异定位。

IF 3.7 2区 生物学 Q2 MICROBIOLOGY
mSphere Pub Date : 2025-03-25 Epub Date: 2025-02-25 DOI:10.1128/msphere.01037-24
Saif Hossain, Zhongle Liu, Nicole Robbins, Leah E Cowen
{"title":"探讨蛋白激酶A在白色念珠菌中的差异定位。","authors":"Saif Hossain, Zhongle Liu, Nicole Robbins, Leah E Cowen","doi":"10.1128/msphere.01037-24","DOIUrl":null,"url":null,"abstract":"<p><p>The cAMP-dependent protein kinase A (PKA) plays important roles in a wide range of biological processes in eukaryotic organisms. In the fungal pathogen <i>Candida albicans</i>, PKA is a critical regulator of morphological transitions, which are a key virulence trait. PKA is composed of two catalytic isoforms, Tpk1 and Tpk2, which are often thought to act together in a complex with the regulatory subunit Bcy1. Although Tpk1 and Tpk2 have some redundant functions, they also have distinct cellular functions for which the mechanistic underpinnings remain largely elusive. Here, we constructed functional GFP-tagged fusion proteins for Tpk1, Tpk2, and Bcy1 to explore the localization of PKA isoforms. We observed that the PKA holoenzyme is mainly found in the cytoplasm, as Bcy1 is always excluded from the nucleus. Under glucose-replete conditions, both Tpk1 and Tpk2 translocate into the nucleus from the cytosol. In the presence of glycerol, Tpk1 resides in the cytosol, whereas Tpk2 and Bcy1 become enriched on the vacuolar membrane. As the C-terminal domains of Tpk are highly homologous, we investigated the localization and function of hybrid Tpk proteins with exchanged N-terminal domains. We found the catalytic C-terminus of Tpk1 is required for morphogenesis in solid medium, whereas the C-terminus of Tpk2 is critical for filamentation in liquid. Interestingly, the N-terminus of Tpk2 drives its localization to the vacuolar membrane. Our work highlights environmentally contingent localization patterns for the PKA subunits and suggests that the nuclear localization of Tpk is not sufficient to induce the filamentation program in a leading fungal pathogen of humans.IMPORTANCEFungal pathogens have a devastating impact on human health worldwide. They infect billions of people and kill more than 2.5 million per year. <i>Candida albicans</i> is a leading human fungal pathogen responsible for causing life-threatening systemic disease in immunocompromised individuals. A key virulence trait in <i>C. albicans</i> is the ability to switch between yeast and filamentous forms. The conserved protein kinase A (PKA) regulates diverse functions in the cell, including growth and filamentation. Although PKA has been studied in <i>C. albicans</i> for decades, the subcellular localization of PKA has not been thoroughly investigated. Here, we constructed functional GFP-tagged PKA subunits to explore their localization. We identified differential localization patterns for the PKA subunits that are carbon-source dependent and report that these proteins localize into foci in response to diverse environmental stresses. These findings further our understanding of a critical regulator of growth and virulence in <i>C. albicans</i>.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0103724"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934313/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the differential localization of protein kinase A isoforms in <i>Candida albicans</i>.\",\"authors\":\"Saif Hossain, Zhongle Liu, Nicole Robbins, Leah E Cowen\",\"doi\":\"10.1128/msphere.01037-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cAMP-dependent protein kinase A (PKA) plays important roles in a wide range of biological processes in eukaryotic organisms. In the fungal pathogen <i>Candida albicans</i>, PKA is a critical regulator of morphological transitions, which are a key virulence trait. PKA is composed of two catalytic isoforms, Tpk1 and Tpk2, which are often thought to act together in a complex with the regulatory subunit Bcy1. Although Tpk1 and Tpk2 have some redundant functions, they also have distinct cellular functions for which the mechanistic underpinnings remain largely elusive. Here, we constructed functional GFP-tagged fusion proteins for Tpk1, Tpk2, and Bcy1 to explore the localization of PKA isoforms. We observed that the PKA holoenzyme is mainly found in the cytoplasm, as Bcy1 is always excluded from the nucleus. Under glucose-replete conditions, both Tpk1 and Tpk2 translocate into the nucleus from the cytosol. In the presence of glycerol, Tpk1 resides in the cytosol, whereas Tpk2 and Bcy1 become enriched on the vacuolar membrane. As the C-terminal domains of Tpk are highly homologous, we investigated the localization and function of hybrid Tpk proteins with exchanged N-terminal domains. We found the catalytic C-terminus of Tpk1 is required for morphogenesis in solid medium, whereas the C-terminus of Tpk2 is critical for filamentation in liquid. Interestingly, the N-terminus of Tpk2 drives its localization to the vacuolar membrane. Our work highlights environmentally contingent localization patterns for the PKA subunits and suggests that the nuclear localization of Tpk is not sufficient to induce the filamentation program in a leading fungal pathogen of humans.IMPORTANCEFungal pathogens have a devastating impact on human health worldwide. They infect billions of people and kill more than 2.5 million per year. <i>Candida albicans</i> is a leading human fungal pathogen responsible for causing life-threatening systemic disease in immunocompromised individuals. A key virulence trait in <i>C. albicans</i> is the ability to switch between yeast and filamentous forms. The conserved protein kinase A (PKA) regulates diverse functions in the cell, including growth and filamentation. Although PKA has been studied in <i>C. albicans</i> for decades, the subcellular localization of PKA has not been thoroughly investigated. Here, we constructed functional GFP-tagged PKA subunits to explore their localization. We identified differential localization patterns for the PKA subunits that are carbon-source dependent and report that these proteins localize into foci in response to diverse environmental stresses. These findings further our understanding of a critical regulator of growth and virulence in <i>C. albicans</i>.</p>\",\"PeriodicalId\":19052,\"journal\":{\"name\":\"mSphere\",\"volume\":\" \",\"pages\":\"e0103724\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934313/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msphere.01037-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.01037-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

camp依赖性蛋白激酶A (PKA)在真核生物的多种生物过程中发挥着重要作用。在真菌病原体白色念珠菌中,PKA是形态转变的关键调节剂,这是一个关键的毒力性状。PKA由两个催化异构体Tpk1和Tpk2组成,它们通常被认为与调控亚基Bcy1共同作用。尽管Tpk1和Tpk2具有一些冗余功能,但它们也具有不同的细胞功能,其机制基础在很大程度上仍然难以捉摸。在这里,我们构建了功能性gfp标记的Tpk1、Tpk2和Bcy1融合蛋白,以探索PKA亚型的定位。我们观察到PKA全酶主要存在于细胞质中,因为Bcy1总是被排除在细胞核之外。在葡萄糖充满的条件下,Tpk1和Tpk2都从细胞质转运到细胞核中。在甘油存在的情况下,Tpk1驻留在细胞质中,而Tpk2和Bcy1在液泡膜上富集。由于Tpk的c端结构域高度同源,我们研究了具有交换n端结构域的杂交Tpk蛋白的定位和功能。我们发现Tpk1的催化c端是固体介质中形态发生所必需的,而Tpk2的c端是液体中成丝的关键。有趣的是,Tpk2的n端驱动其定位到液泡膜。我们的工作强调了PKA亚基的环境偶然定位模式,并表明Tpk的核定位不足以诱导人类主要真菌病原体的成丝程序。真菌病原体在世界范围内对人类健康有着毁灭性的影响。它们每年感染数十亿人,造成250多万人死亡。白色念珠菌是一种主要的人类真菌病原体,在免疫功能低下的个体中引起危及生命的全身性疾病。白色念珠菌的一个关键毒力特征是在酵母菌和丝状念珠菌之间切换的能力。保守的蛋白激酶A (PKA)调节细胞的多种功能,包括生长和丝化。尽管PKA在白色念珠菌中的研究已经进行了几十年,但PKA的亚细胞定位尚未得到彻底的研究。在这里,我们构建了功能性gfp标记的PKA亚基来探索它们的定位。我们确定了依赖碳源的PKA亚基的不同定位模式,并报道这些蛋白质在不同环境胁迫下定位为病灶。这些发现进一步加深了我们对白色念珠菌生长和毒力的关键调节因子的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the differential localization of protein kinase A isoforms in Candida albicans.

The cAMP-dependent protein kinase A (PKA) plays important roles in a wide range of biological processes in eukaryotic organisms. In the fungal pathogen Candida albicans, PKA is a critical regulator of morphological transitions, which are a key virulence trait. PKA is composed of two catalytic isoforms, Tpk1 and Tpk2, which are often thought to act together in a complex with the regulatory subunit Bcy1. Although Tpk1 and Tpk2 have some redundant functions, they also have distinct cellular functions for which the mechanistic underpinnings remain largely elusive. Here, we constructed functional GFP-tagged fusion proteins for Tpk1, Tpk2, and Bcy1 to explore the localization of PKA isoforms. We observed that the PKA holoenzyme is mainly found in the cytoplasm, as Bcy1 is always excluded from the nucleus. Under glucose-replete conditions, both Tpk1 and Tpk2 translocate into the nucleus from the cytosol. In the presence of glycerol, Tpk1 resides in the cytosol, whereas Tpk2 and Bcy1 become enriched on the vacuolar membrane. As the C-terminal domains of Tpk are highly homologous, we investigated the localization and function of hybrid Tpk proteins with exchanged N-terminal domains. We found the catalytic C-terminus of Tpk1 is required for morphogenesis in solid medium, whereas the C-terminus of Tpk2 is critical for filamentation in liquid. Interestingly, the N-terminus of Tpk2 drives its localization to the vacuolar membrane. Our work highlights environmentally contingent localization patterns for the PKA subunits and suggests that the nuclear localization of Tpk is not sufficient to induce the filamentation program in a leading fungal pathogen of humans.IMPORTANCEFungal pathogens have a devastating impact on human health worldwide. They infect billions of people and kill more than 2.5 million per year. Candida albicans is a leading human fungal pathogen responsible for causing life-threatening systemic disease in immunocompromised individuals. A key virulence trait in C. albicans is the ability to switch between yeast and filamentous forms. The conserved protein kinase A (PKA) regulates diverse functions in the cell, including growth and filamentation. Although PKA has been studied in C. albicans for decades, the subcellular localization of PKA has not been thoroughly investigated. Here, we constructed functional GFP-tagged PKA subunits to explore their localization. We identified differential localization patterns for the PKA subunits that are carbon-source dependent and report that these proteins localize into foci in response to diverse environmental stresses. These findings further our understanding of a critical regulator of growth and virulence in C. albicans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mSphere
mSphere Immunology and Microbiology-Microbiology
CiteScore
8.50
自引率
2.10%
发文量
192
审稿时长
11 weeks
期刊介绍: mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信