Cameron Martino, Benjamin P Kellman, Daniel R Sandoval, Thomas Mandel Clausen, Robert Cooper, Alhosna Benjdia, Feryel Soualmia, Alex E Clark, Aaron F Garretson, Clarisse A Marotz, Se Jin Song, Stephen Wandro, Livia S Zaramela, Rodolfo A Salido, Qiyun Zhu, Erick Armingol, Yoshiki Vázquez-Baeza, Daniel McDonald, James T Sorrentino, Bryn Taylor, Pedro Belda-Ferre, Promi Das, Farhana Ali, Chenguang Liang, Yujie Zhang, Luca Schifanella, Alice Covizzi, Alessia Lai, Agostino Riva, Christopher Basting, Courtney Ann Broedlow, Aki S Havulinna, Pekka Jousilahti, Mehrbod Estaki, Tomasz Kosciolek, Rayus Kuplicki, Teresa A Victor, Martin P Paulus, Kristen E Savage, Jennifer L Benbow, Emma S Spielfogel, Cheryl A M Anderson, Maria Elena Martinez, James V Lacey, Shi Huang, Niina Haiminen, Laxmi Parida, Ho-Cheol Kim, Jack A Gilbert, Daniel A Sweeney, Sarah M Allard, Austin D Swafford, Susan Cheng, Michael Inouye, Teemu Niiranen, Mohit Jain, Veikko Salomaa, Karsten Zengler, Nichole R Klatt, Jeff Hasty, Olivier Berteau, Aaron F Carlin, Jeffrey D Esko, Nathan E Lewis, Rob Knight
{"title":"SARS-CoV-2的传染性可以通过细菌修饰糖萼来调节。","authors":"Cameron Martino, Benjamin P Kellman, Daniel R Sandoval, Thomas Mandel Clausen, Robert Cooper, Alhosna Benjdia, Feryel Soualmia, Alex E Clark, Aaron F Garretson, Clarisse A Marotz, Se Jin Song, Stephen Wandro, Livia S Zaramela, Rodolfo A Salido, Qiyun Zhu, Erick Armingol, Yoshiki Vázquez-Baeza, Daniel McDonald, James T Sorrentino, Bryn Taylor, Pedro Belda-Ferre, Promi Das, Farhana Ali, Chenguang Liang, Yujie Zhang, Luca Schifanella, Alice Covizzi, Alessia Lai, Agostino Riva, Christopher Basting, Courtney Ann Broedlow, Aki S Havulinna, Pekka Jousilahti, Mehrbod Estaki, Tomasz Kosciolek, Rayus Kuplicki, Teresa A Victor, Martin P Paulus, Kristen E Savage, Jennifer L Benbow, Emma S Spielfogel, Cheryl A M Anderson, Maria Elena Martinez, James V Lacey, Shi Huang, Niina Haiminen, Laxmi Parida, Ho-Cheol Kim, Jack A Gilbert, Daniel A Sweeney, Sarah M Allard, Austin D Swafford, Susan Cheng, Michael Inouye, Teemu Niiranen, Mohit Jain, Veikko Salomaa, Karsten Zengler, Nichole R Klatt, Jeff Hasty, Olivier Berteau, Aaron F Carlin, Jeffrey D Esko, Nathan E Lewis, Rob Knight","doi":"10.1128/mbio.04015-24","DOIUrl":null,"url":null,"abstract":"<p><p>The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract's glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2's spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity <i>in vitro</i>. Moreover, we engineered the common probiotic <i>Escherichia coli</i> Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0401524"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx.\",\"authors\":\"Cameron Martino, Benjamin P Kellman, Daniel R Sandoval, Thomas Mandel Clausen, Robert Cooper, Alhosna Benjdia, Feryel Soualmia, Alex E Clark, Aaron F Garretson, Clarisse A Marotz, Se Jin Song, Stephen Wandro, Livia S Zaramela, Rodolfo A Salido, Qiyun Zhu, Erick Armingol, Yoshiki Vázquez-Baeza, Daniel McDonald, James T Sorrentino, Bryn Taylor, Pedro Belda-Ferre, Promi Das, Farhana Ali, Chenguang Liang, Yujie Zhang, Luca Schifanella, Alice Covizzi, Alessia Lai, Agostino Riva, Christopher Basting, Courtney Ann Broedlow, Aki S Havulinna, Pekka Jousilahti, Mehrbod Estaki, Tomasz Kosciolek, Rayus Kuplicki, Teresa A Victor, Martin P Paulus, Kristen E Savage, Jennifer L Benbow, Emma S Spielfogel, Cheryl A M Anderson, Maria Elena Martinez, James V Lacey, Shi Huang, Niina Haiminen, Laxmi Parida, Ho-Cheol Kim, Jack A Gilbert, Daniel A Sweeney, Sarah M Allard, Austin D Swafford, Susan Cheng, Michael Inouye, Teemu Niiranen, Mohit Jain, Veikko Salomaa, Karsten Zengler, Nichole R Klatt, Jeff Hasty, Olivier Berteau, Aaron F Carlin, Jeffrey D Esko, Nathan E Lewis, Rob Knight\",\"doi\":\"10.1128/mbio.04015-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract's glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2's spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity <i>in vitro</i>. Moreover, we engineered the common probiotic <i>Escherichia coli</i> Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0401524\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.04015-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.04015-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx.
The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract's glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2's spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity in vitro. Moreover, we engineered the common probiotic Escherichia coli Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.
期刊介绍:
mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.