SARS-CoV-2的传染性可以通过细菌修饰糖萼来调节。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-04-09 Epub Date: 2025-02-25 DOI:10.1128/mbio.04015-24
Cameron Martino, Benjamin P Kellman, Daniel R Sandoval, Thomas Mandel Clausen, Robert Cooper, Alhosna Benjdia, Feryel Soualmia, Alex E Clark, Aaron F Garretson, Clarisse A Marotz, Se Jin Song, Stephen Wandro, Livia S Zaramela, Rodolfo A Salido, Qiyun Zhu, Erick Armingol, Yoshiki Vázquez-Baeza, Daniel McDonald, James T Sorrentino, Bryn Taylor, Pedro Belda-Ferre, Promi Das, Farhana Ali, Chenguang Liang, Yujie Zhang, Luca Schifanella, Alice Covizzi, Alessia Lai, Agostino Riva, Christopher Basting, Courtney Ann Broedlow, Aki S Havulinna, Pekka Jousilahti, Mehrbod Estaki, Tomasz Kosciolek, Rayus Kuplicki, Teresa A Victor, Martin P Paulus, Kristen E Savage, Jennifer L Benbow, Emma S Spielfogel, Cheryl A M Anderson, Maria Elena Martinez, James V Lacey, Shi Huang, Niina Haiminen, Laxmi Parida, Ho-Cheol Kim, Jack A Gilbert, Daniel A Sweeney, Sarah M Allard, Austin D Swafford, Susan Cheng, Michael Inouye, Teemu Niiranen, Mohit Jain, Veikko Salomaa, Karsten Zengler, Nichole R Klatt, Jeff Hasty, Olivier Berteau, Aaron F Carlin, Jeffrey D Esko, Nathan E Lewis, Rob Knight
{"title":"SARS-CoV-2的传染性可以通过细菌修饰糖萼来调节。","authors":"Cameron Martino, Benjamin P Kellman, Daniel R Sandoval, Thomas Mandel Clausen, Robert Cooper, Alhosna Benjdia, Feryel Soualmia, Alex E Clark, Aaron F Garretson, Clarisse A Marotz, Se Jin Song, Stephen Wandro, Livia S Zaramela, Rodolfo A Salido, Qiyun Zhu, Erick Armingol, Yoshiki Vázquez-Baeza, Daniel McDonald, James T Sorrentino, Bryn Taylor, Pedro Belda-Ferre, Promi Das, Farhana Ali, Chenguang Liang, Yujie Zhang, Luca Schifanella, Alice Covizzi, Alessia Lai, Agostino Riva, Christopher Basting, Courtney Ann Broedlow, Aki S Havulinna, Pekka Jousilahti, Mehrbod Estaki, Tomasz Kosciolek, Rayus Kuplicki, Teresa A Victor, Martin P Paulus, Kristen E Savage, Jennifer L Benbow, Emma S Spielfogel, Cheryl A M Anderson, Maria Elena Martinez, James V Lacey, Shi Huang, Niina Haiminen, Laxmi Parida, Ho-Cheol Kim, Jack A Gilbert, Daniel A Sweeney, Sarah M Allard, Austin D Swafford, Susan Cheng, Michael Inouye, Teemu Niiranen, Mohit Jain, Veikko Salomaa, Karsten Zengler, Nichole R Klatt, Jeff Hasty, Olivier Berteau, Aaron F Carlin, Jeffrey D Esko, Nathan E Lewis, Rob Knight","doi":"10.1128/mbio.04015-24","DOIUrl":null,"url":null,"abstract":"<p><p>The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract's glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2's spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity <i>in vitro</i>. Moreover, we engineered the common probiotic <i>Escherichia coli</i> Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0401524"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx.\",\"authors\":\"Cameron Martino, Benjamin P Kellman, Daniel R Sandoval, Thomas Mandel Clausen, Robert Cooper, Alhosna Benjdia, Feryel Soualmia, Alex E Clark, Aaron F Garretson, Clarisse A Marotz, Se Jin Song, Stephen Wandro, Livia S Zaramela, Rodolfo A Salido, Qiyun Zhu, Erick Armingol, Yoshiki Vázquez-Baeza, Daniel McDonald, James T Sorrentino, Bryn Taylor, Pedro Belda-Ferre, Promi Das, Farhana Ali, Chenguang Liang, Yujie Zhang, Luca Schifanella, Alice Covizzi, Alessia Lai, Agostino Riva, Christopher Basting, Courtney Ann Broedlow, Aki S Havulinna, Pekka Jousilahti, Mehrbod Estaki, Tomasz Kosciolek, Rayus Kuplicki, Teresa A Victor, Martin P Paulus, Kristen E Savage, Jennifer L Benbow, Emma S Spielfogel, Cheryl A M Anderson, Maria Elena Martinez, James V Lacey, Shi Huang, Niina Haiminen, Laxmi Parida, Ho-Cheol Kim, Jack A Gilbert, Daniel A Sweeney, Sarah M Allard, Austin D Swafford, Susan Cheng, Michael Inouye, Teemu Niiranen, Mohit Jain, Veikko Salomaa, Karsten Zengler, Nichole R Klatt, Jeff Hasty, Olivier Berteau, Aaron F Carlin, Jeffrey D Esko, Nathan E Lewis, Rob Knight\",\"doi\":\"10.1128/mbio.04015-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract's glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2's spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity <i>in vitro</i>. Moreover, we engineered the common probiotic <i>Escherichia coli</i> Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0401524\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.04015-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.04015-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胃肠道是严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)的复制部位,患者经常报告胃肠道症状。SARS-CoV-2细胞的进入依赖于硫酸肝素(HS)蛋白聚糖,已知人体粘膜上的共生细菌会对其进行修饰。为了探索人类肠道hs修饰细菌丰度及其存在如何影响SARS-CoV-2感染,我们基于大规模霰弹枪宏基因组数据开发了基于任务的蛋白聚糖降解分析。我们观察到,具有高预测HS分解代谢能力的肠道细菌因年龄和性别、与2019冠状病毒病(COVID-19)严重程度相关的因素以及感染期间/之后的疾病严重程度而存在差异,但在患有COVID-19合合症的受试者或饮食之间没有差异。肠道共生细菌hs修饰酶减少刺突蛋白结合和真正的SARS-CoV-2感染,表明细菌修饰胃肠道粘膜可能影响病毒易感性。严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)是导致2019冠状病毒病的病毒,可感染胃肠道,表现出胃肠道症状的个体通常患有更严重的疾病。胃肠道的糖萼是覆盖大肠的粘膜的一个组成部分,它通过硫酸肝素(HS)结合SARS-CoV-2的刺突蛋白,在病毒进入中发挥关键作用。通过对人类肠道微生物组多个大型微生物组测序数据集的代谢任务分析,我们在体外鉴定出一种能够修饰糖萼HS并调节SARS-CoV-2传染性的关键共生人类肠道细菌。此外,我们设计了常见的益生菌大肠杆菌Nissle 1917 (EcN),可有效阻断SARS-CoV-2结合和感染人类细胞培养物。了解这些微生物的相互作用可能会导致更好的风险评估和针对病毒进入机制的新疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SARS-CoV-2 infectivity can be modulated through bacterial grooming of the glycocalyx.

The gastrointestinal (GI) tract is a site of replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and GI symptoms are often reported by patients. SARS-CoV-2 cell entry depends upon heparan sulfate (HS) proteoglycans, which commensal bacteria that bathe the human mucosa are known to modify. To explore human gut HS-modifying bacterial abundances and how their presence may impact SARS-CoV-2 infection, we developed a task-based analysis of proteoglycan degradation on large-scale shotgun metagenomic data. We observed that gut bacteria with high predicted catabolic capacity for HS differ by age and sex, factors associated with coronavirus disease 2019 (COVID-19) severity, and directly by disease severity during/after infection, but do not vary between subjects with COVID-19 comorbidities or by diet. Gut commensal bacterial HS-modifying enzymes reduce spike protein binding and infection of authentic SARS-CoV-2, suggesting that bacterial grooming of the GI mucosa may impact viral susceptibility.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019, can infect the gastrointestinal (GI) tract, and individuals who exhibit GI symptoms often have more severe disease. The GI tract's glycocalyx, a component of the mucosa covering the large intestine, plays a key role in viral entry by binding SARS-CoV-2's spike protein via heparan sulfate (HS). Here, using metabolic task analysis of multiple large microbiome sequencing data sets of the human gut microbiome, we identify a key commensal human intestinal bacteria capable of grooming glycocalyx HS and modulating SARS-CoV-2 infectivity in vitro. Moreover, we engineered the common probiotic Escherichia coli Nissle 1917 (EcN) to effectively block SARS-CoV-2 binding and infection of human cell cultures. Understanding these microbial interactions could lead to better risk assessments and novel therapies targeting viral entry mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信