内源性一氧化氮通过激活自噬来促进金黄色葡萄球菌的毒力。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-04-09 Epub Date: 2025-02-25 DOI:10.1128/mbio.04006-24
Nadira Nurxat, Qichen Wang, Na Zhao, Yanan Guo, Xilong Zhang, Yanan Wang, Ying Jian, Hua Wang, Shengbing Yang, Min Li, Qian Liu
{"title":"内源性一氧化氮通过激活自噬来促进金黄色葡萄球菌的毒力。","authors":"Nadira Nurxat, Qichen Wang, Na Zhao, Yanan Guo, Xilong Zhang, Yanan Wang, Ying Jian, Hua Wang, Shengbing Yang, Min Li, Qian Liu","doi":"10.1128/mbio.04006-24","DOIUrl":null,"url":null,"abstract":"<p><p>Endogenous nitric oxide (NO) is a small molecule that has been demonstrated to affect the physiology and survival of bacteria. The role of endogenous NO for <i>Staphylococcus aureus</i> survival inside host cells remains unclear. Here, we show that the production of endogenous NO by bacterial nitrate reductase (NR) is affected by molybdopterin biosynthesis protein A (MoeA), which is essential for molybdenum cofactor synthesis in <i>S. aureus</i>. During the infection, the production of endogenous NO promotes <i>S. aureus</i> survival inside macrophages by initiating cellular autophagy. Mechanistically, bacterial endogenous NO can modify the host regulatory protein thioredoxin vis S-nitrosylation, subsequently triggering the phosphorylation of the JNK-Bcl-2 pathway and promoting the initiation of autophagy through the release of Beclin1. Moreover, we confirmed the critical role of MoeA in bacterial survival <i>in vivo</i> by using bloodstream infection, pneumonia, and skin abscess model on both wild-type and autophagy-deficient mice. Interestingly, we observed the significantly increased production of NO and activation of cellular autophagy of sequence type (ST)5 compared with ST239, suggesting that the initiation of autophagy is involved in the clone shift of <i>S. aureus</i>. Our data offered new insights on the role of bacterial endogenous NO in regulating the host signal pathway during infection inside host cells.IMPORTANCEUnderstanding the mechanism underlying <i>Staphylococcus aureus</i> pathogenesis is essential for developing innovative strategies for the prevention and treatment of infection. In this study, we underscore the critical role of molybdopterin biosynthesis protein A and nitric oxide (NO) in inducing autophagy during <i>S. aureus</i> survival within macrophage and <i>in vivo</i> infection. We demonstrate that host regulatory protein can be modified by bacterial metabolites, which may influence cellular processes. Furthermore, our findings indicated that increased endogenous NO production may contribute to the stable prevalence of <i>S. aureus</i> ST5 in the healthcare-associated environment. These findings highlight the significance of bacterial metabolism in modulating the host immune system, thereby facilitating <i>S. aureus</i> survival and persistence.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0400624"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endogenous nitric oxide promotes <i>Staphylococcus aureus</i> virulence by activating autophagy.\",\"authors\":\"Nadira Nurxat, Qichen Wang, Na Zhao, Yanan Guo, Xilong Zhang, Yanan Wang, Ying Jian, Hua Wang, Shengbing Yang, Min Li, Qian Liu\",\"doi\":\"10.1128/mbio.04006-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endogenous nitric oxide (NO) is a small molecule that has been demonstrated to affect the physiology and survival of bacteria. The role of endogenous NO for <i>Staphylococcus aureus</i> survival inside host cells remains unclear. Here, we show that the production of endogenous NO by bacterial nitrate reductase (NR) is affected by molybdopterin biosynthesis protein A (MoeA), which is essential for molybdenum cofactor synthesis in <i>S. aureus</i>. During the infection, the production of endogenous NO promotes <i>S. aureus</i> survival inside macrophages by initiating cellular autophagy. Mechanistically, bacterial endogenous NO can modify the host regulatory protein thioredoxin vis S-nitrosylation, subsequently triggering the phosphorylation of the JNK-Bcl-2 pathway and promoting the initiation of autophagy through the release of Beclin1. Moreover, we confirmed the critical role of MoeA in bacterial survival <i>in vivo</i> by using bloodstream infection, pneumonia, and skin abscess model on both wild-type and autophagy-deficient mice. Interestingly, we observed the significantly increased production of NO and activation of cellular autophagy of sequence type (ST)5 compared with ST239, suggesting that the initiation of autophagy is involved in the clone shift of <i>S. aureus</i>. Our data offered new insights on the role of bacterial endogenous NO in regulating the host signal pathway during infection inside host cells.IMPORTANCEUnderstanding the mechanism underlying <i>Staphylococcus aureus</i> pathogenesis is essential for developing innovative strategies for the prevention and treatment of infection. In this study, we underscore the critical role of molybdopterin biosynthesis protein A and nitric oxide (NO) in inducing autophagy during <i>S. aureus</i> survival within macrophage and <i>in vivo</i> infection. We demonstrate that host regulatory protein can be modified by bacterial metabolites, which may influence cellular processes. Furthermore, our findings indicated that increased endogenous NO production may contribute to the stable prevalence of <i>S. aureus</i> ST5 in the healthcare-associated environment. These findings highlight the significance of bacterial metabolism in modulating the host immune system, thereby facilitating <i>S. aureus</i> survival and persistence.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0400624\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.04006-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.04006-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

内源性一氧化氮(NO)是一种小分子,已被证明可以影响细菌的生理和生存。内源性NO在宿主细胞内金黄色葡萄球菌存活中的作用尚不清楚。在这里,我们发现细菌硝酸盐还原酶(NR)产生内源性NO受到钼合成蛋白A (MoeA)的影响,钼合成蛋白A是金黄色葡萄球菌合成钼辅助因子所必需的。在感染过程中,内源性NO的产生通过启动细胞自噬促进金黄色葡萄球菌在巨噬细胞内存活。机制上,细菌内源性NO通过s -亚硝基化修饰宿主调节蛋白硫氧还蛋白,进而通过释放Beclin1触发JNK-Bcl-2通路磷酸化,促进自噬的启动。此外,我们通过对野生型和自噬缺陷小鼠的血液感染、肺炎和皮肤脓肿模型证实了MoeA在细菌体内存活中的关键作用。有趣的是,与ST239相比,我们观察到序列型(ST)5的NO产生和细胞自噬激活显著增加,这表明自噬的启动参与了金黄色葡萄球菌的克隆转移。我们的数据为细菌内源性NO在宿主细胞感染过程中调节宿主信号通路的作用提供了新的见解。了解金黄色葡萄球菌发病机制对于制定预防和治疗感染的创新策略至关重要。在这项研究中,我们强调了生物合成蛋白A和一氧化氮(NO)在金黄色葡萄球菌在巨噬细胞内存活和体内感染过程中诱导自噬的关键作用。我们证明宿主调节蛋白可以被细菌代谢物修饰,这可能会影响细胞过程。此外,我们的研究结果表明,内源性NO生成的增加可能有助于金黄色葡萄球菌ST5在医疗相关环境中的稳定流行。这些发现强调了细菌代谢在调节宿主免疫系统中的重要性,从而促进了金黄色葡萄球菌的生存和持久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endogenous nitric oxide promotes Staphylococcus aureus virulence by activating autophagy.

Endogenous nitric oxide (NO) is a small molecule that has been demonstrated to affect the physiology and survival of bacteria. The role of endogenous NO for Staphylococcus aureus survival inside host cells remains unclear. Here, we show that the production of endogenous NO by bacterial nitrate reductase (NR) is affected by molybdopterin biosynthesis protein A (MoeA), which is essential for molybdenum cofactor synthesis in S. aureus. During the infection, the production of endogenous NO promotes S. aureus survival inside macrophages by initiating cellular autophagy. Mechanistically, bacterial endogenous NO can modify the host regulatory protein thioredoxin vis S-nitrosylation, subsequently triggering the phosphorylation of the JNK-Bcl-2 pathway and promoting the initiation of autophagy through the release of Beclin1. Moreover, we confirmed the critical role of MoeA in bacterial survival in vivo by using bloodstream infection, pneumonia, and skin abscess model on both wild-type and autophagy-deficient mice. Interestingly, we observed the significantly increased production of NO and activation of cellular autophagy of sequence type (ST)5 compared with ST239, suggesting that the initiation of autophagy is involved in the clone shift of S. aureus. Our data offered new insights on the role of bacterial endogenous NO in regulating the host signal pathway during infection inside host cells.IMPORTANCEUnderstanding the mechanism underlying Staphylococcus aureus pathogenesis is essential for developing innovative strategies for the prevention and treatment of infection. In this study, we underscore the critical role of molybdopterin biosynthesis protein A and nitric oxide (NO) in inducing autophagy during S. aureus survival within macrophage and in vivo infection. We demonstrate that host regulatory protein can be modified by bacterial metabolites, which may influence cellular processes. Furthermore, our findings indicated that increased endogenous NO production may contribute to the stable prevalence of S. aureus ST5 in the healthcare-associated environment. These findings highlight the significance of bacterial metabolism in modulating the host immune system, thereby facilitating S. aureus survival and persistence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信