平滑肌ASH2L缺乏驱动肺血管重构

IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Circulation research Pub Date : 2025-03-28 Epub Date: 2025-02-25 DOI:10.1161/CIRCRESAHA.124.325539
Jing Zhang, Xia Gu, Tian-Le Cheng, Yong-Jia Qi, Dao-Yan Liu, Na Wu, Da-Peng Wang, Yu Huang, Zhi-Ming Zhu, Ye Fan
{"title":"平滑肌ASH2L缺乏驱动肺血管重构","authors":"Jing Zhang, Xia Gu, Tian-Le Cheng, Yong-Jia Qi, Dao-Yan Liu, Na Wu, Da-Peng Wang, Yu Huang, Zhi-Ming Zhu, Ye Fan","doi":"10.1161/CIRCRESAHA.124.325539","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Histone H3 lysine 4 methylation is one of the most abundant epigenetic modifications, which has been recently linked to vascular remodeling in pulmonary hypertension (PH). SET1/MLL methyltransferase complexes comprise the main enzymes responsible for methylating H3 lysine 4, yet their roles in vascular remodeling and PH are not fully understood. We aim to assess the contribution of ASH2L, a core SET1/MLL family member, to the pathogenesis of PH.</p><p><strong>Methods: </strong>Human pulmonary artery specimens and primary vascular cells, smooth muscle cell (SMC)-specific <i>ASH2L</i>-deficient mice, rats with SMC-specific ASH2L overexpression, mass spectrometry, immunoprecipitation, and chromatin immunoprecipitation were used to define the role of ASH2L in PH.</p><p><strong>Results: </strong>Analysis of bulk RNA-sequencing data sets from human lung vessels identified ASH2L as the only differentially expressed SET1/MLL family member in PH compared with healthy controls. Decreased ASH2L expression in human pulmonary arteries correlated with the clinical severity of PH, which contrasted with elevated H3 lysine 4 methylation and was primarily localized to SMCs. Depletion of ASH2L promoted whereas its restoration ameliorated SMC proliferation and vascular remodeling in PH. Mechanistically, we revealed that ASH2L functioned independently of the canonical H3 lysine 4 trimethylation-based transcriptional activation, while it formed a protein complex with KLF5 and FBXW7, thereby accelerating the ubiquitin-proteasomal degradation of KLF5. NOTCH3 was discovered as a new downstream target of KLF5, and the loss of ASH2L promoted the recruitment of KLF5 to the NOTCH3 promoter, thus enhancing NOTCH3 expression. Pharmacological blockage of KLF5 attenuated PH in chronic hypoxia-exposed SMC-specific <i>ASH2L</i>-deficient mice and sugen/hypoxia-challenged rats.</p><p><strong>Conclusions: </strong>This study demonstrated that ASH2L deficiency causatively affects SMC proliferation and lung vascular remodeling that is partially mediated through KLF5-dependent NOTCH3 transcription. Activating ASH2L or targeting KLF5 might represent potential therapeutic strategies for PH.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":"719-734"},"PeriodicalIF":16.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASH2L Deficiency in Smooth Muscle Drives Pulmonary Vascular Remodeling.\",\"authors\":\"Jing Zhang, Xia Gu, Tian-Le Cheng, Yong-Jia Qi, Dao-Yan Liu, Na Wu, Da-Peng Wang, Yu Huang, Zhi-Ming Zhu, Ye Fan\",\"doi\":\"10.1161/CIRCRESAHA.124.325539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Histone H3 lysine 4 methylation is one of the most abundant epigenetic modifications, which has been recently linked to vascular remodeling in pulmonary hypertension (PH). SET1/MLL methyltransferase complexes comprise the main enzymes responsible for methylating H3 lysine 4, yet their roles in vascular remodeling and PH are not fully understood. We aim to assess the contribution of ASH2L, a core SET1/MLL family member, to the pathogenesis of PH.</p><p><strong>Methods: </strong>Human pulmonary artery specimens and primary vascular cells, smooth muscle cell (SMC)-specific <i>ASH2L</i>-deficient mice, rats with SMC-specific ASH2L overexpression, mass spectrometry, immunoprecipitation, and chromatin immunoprecipitation were used to define the role of ASH2L in PH.</p><p><strong>Results: </strong>Analysis of bulk RNA-sequencing data sets from human lung vessels identified ASH2L as the only differentially expressed SET1/MLL family member in PH compared with healthy controls. Decreased ASH2L expression in human pulmonary arteries correlated with the clinical severity of PH, which contrasted with elevated H3 lysine 4 methylation and was primarily localized to SMCs. Depletion of ASH2L promoted whereas its restoration ameliorated SMC proliferation and vascular remodeling in PH. Mechanistically, we revealed that ASH2L functioned independently of the canonical H3 lysine 4 trimethylation-based transcriptional activation, while it formed a protein complex with KLF5 and FBXW7, thereby accelerating the ubiquitin-proteasomal degradation of KLF5. NOTCH3 was discovered as a new downstream target of KLF5, and the loss of ASH2L promoted the recruitment of KLF5 to the NOTCH3 promoter, thus enhancing NOTCH3 expression. Pharmacological blockage of KLF5 attenuated PH in chronic hypoxia-exposed SMC-specific <i>ASH2L</i>-deficient mice and sugen/hypoxia-challenged rats.</p><p><strong>Conclusions: </strong>This study demonstrated that ASH2L deficiency causatively affects SMC proliferation and lung vascular remodeling that is partially mediated through KLF5-dependent NOTCH3 transcription. Activating ASH2L or targeting KLF5 might represent potential therapeutic strategies for PH.</p>\",\"PeriodicalId\":10147,\"journal\":{\"name\":\"Circulation research\",\"volume\":\" \",\"pages\":\"719-734\"},\"PeriodicalIF\":16.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCRESAHA.124.325539\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325539","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:组蛋白H3赖氨酸4甲基化是最丰富的表观遗传修饰之一,最近与肺动脉高压(PH)的血管重构有关。SET1/MLL甲基转移酶复合物包括负责H3赖氨酸4甲基化的主要酶,但它们在血管重塑和PH中的作用尚不完全清楚。我们的目的是评估SET1/MLL核心家族成员ASH2L在ph发病中的作用。方法:采用人肺动脉标本和原代血管细胞、平滑肌细胞(SMC)特异性ASH2L缺陷小鼠、SMC特异性ASH2L过表达大鼠、质谱、免疫沉淀和染色质免疫沉淀来确定ASH2L在ph中的作用。对来自人肺血管的大量rna测序数据集的分析发现,与健康对照组相比,ASH2L是PH中唯一差异表达的SET1/MLL家族成员。人肺动脉中ASH2L表达降低与临床PH严重程度相关,与H3赖氨酸4甲基化升高形成对比,且主要局限于SMCs。ASH2L的缺失促进了ph下SMC的增殖和血管重构,而其恢复则改善了ph下SMC的增殖和血管重构。在机制上,我们发现ASH2L独立于典型的H3赖氨酸4三甲基化转录激活,而它与KLF5和FBXW7形成蛋白复合物,从而加速了KLF5的泛素蛋白酶体降解。NOTCH3被发现是KLF5的一个新的下游靶点,ASH2L的缺失促进了KLF5向NOTCH3启动子募集,从而增强了NOTCH3的表达。在慢性缺氧暴露的smc特异性ash2l缺陷小鼠和糖/缺氧挑战大鼠中,KLF5的药理阻断可降低PH。结论:本研究表明,ASH2L缺乏可通过klf5依赖性NOTCH3转录部分介导SMC增殖和肺血管重构。激活ASH2L或靶向KLF5可能代表潜在的PH治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASH2L Deficiency in Smooth Muscle Drives Pulmonary Vascular Remodeling.

Background: Histone H3 lysine 4 methylation is one of the most abundant epigenetic modifications, which has been recently linked to vascular remodeling in pulmonary hypertension (PH). SET1/MLL methyltransferase complexes comprise the main enzymes responsible for methylating H3 lysine 4, yet their roles in vascular remodeling and PH are not fully understood. We aim to assess the contribution of ASH2L, a core SET1/MLL family member, to the pathogenesis of PH.

Methods: Human pulmonary artery specimens and primary vascular cells, smooth muscle cell (SMC)-specific ASH2L-deficient mice, rats with SMC-specific ASH2L overexpression, mass spectrometry, immunoprecipitation, and chromatin immunoprecipitation were used to define the role of ASH2L in PH.

Results: Analysis of bulk RNA-sequencing data sets from human lung vessels identified ASH2L as the only differentially expressed SET1/MLL family member in PH compared with healthy controls. Decreased ASH2L expression in human pulmonary arteries correlated with the clinical severity of PH, which contrasted with elevated H3 lysine 4 methylation and was primarily localized to SMCs. Depletion of ASH2L promoted whereas its restoration ameliorated SMC proliferation and vascular remodeling in PH. Mechanistically, we revealed that ASH2L functioned independently of the canonical H3 lysine 4 trimethylation-based transcriptional activation, while it formed a protein complex with KLF5 and FBXW7, thereby accelerating the ubiquitin-proteasomal degradation of KLF5. NOTCH3 was discovered as a new downstream target of KLF5, and the loss of ASH2L promoted the recruitment of KLF5 to the NOTCH3 promoter, thus enhancing NOTCH3 expression. Pharmacological blockage of KLF5 attenuated PH in chronic hypoxia-exposed SMC-specific ASH2L-deficient mice and sugen/hypoxia-challenged rats.

Conclusions: This study demonstrated that ASH2L deficiency causatively affects SMC proliferation and lung vascular remodeling that is partially mediated through KLF5-dependent NOTCH3 transcription. Activating ASH2L or targeting KLF5 might represent potential therapeutic strategies for PH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circulation research
Circulation research 医学-外周血管病
CiteScore
29.60
自引率
2.00%
发文量
535
审稿时长
3-6 weeks
期刊介绍: Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies. Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities. In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field. Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信