{"title":"急性淋巴性白血病儿童向青春期过渡的复发性错义驱动因子STAT5B N642H突变及其计算机抑制作用","authors":"Rehana Yasmin, Rashda Abbasi, Tajdar Jahangir Gohar, Hina, Nafees Ahmad, Sajid Malik","doi":"10.2174/0118715206350463241226032324","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The occurrence of gain of function mutations in STAT5B has been associated to survival, and drug resistance in Leukemia. In silico screening of compounds having inhibitory potential towards mutated proteins, can be helpful in the development of specific inhibitors.</p><p><strong>Objective: </strong>This study was designed to screen selected JAK-STAT mutations in leukemia patients and virtual exploration of molecular interaction of potential inhibitors with their mutated products.</p><p><strong>Methods: </strong>In total 276 patients were randomly recruited for this study. Demographic and clinical data were summarized. The genetic status of JAK1V623A, JAK2 S473 and STAT5BN642H were screened through allele specific PCR. In-silico analysis was performed on wild type and mutant protein sequences retrieved from Protein databank. The ligands and protein were prepared through standard protocols, and docking was performed through Auto Dock Vina 1.2.0.</p><p><strong>Results: </strong>Acute lymphoblastic leukemia comprises 70% of the total patients. Male to female ratio was 3:1. All the patients were homozygous for JAK1V623A, JAK2 S473 major allele. However, 6 patients (5 male, 1 female) with ALL were STAT5BN642H+. The molecular docking of the ligands to wild type and STAT5BN642H+revealed that AC- 4-130, Pimozide, Indirubin and Stafib-2 have higher but differential docking affinities for SH2-domain of both normal and mutated STAT5B. However, AC-4-130 has a higher affinity for wild type and Stafib-2 has stable molecular interaction with STAT5BN642H+.</p><p><strong>Conclusion: </strong>The aggressive form of pediatric leukemia, carrying STAT5BN642H+ mutation is identified in the studied population. It is predicted that AC-14-30 and stafib-2 have potential for inhibition of constitutively active STAT5B if optimized for use in combination therapy.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent Missense Driver STAT5B N642H Mutation in Children Transiting into Adolescence, with Acute Lymphoid Leukemia and its In silico Inhibition.\",\"authors\":\"Rehana Yasmin, Rashda Abbasi, Tajdar Jahangir Gohar, Hina, Nafees Ahmad, Sajid Malik\",\"doi\":\"10.2174/0118715206350463241226032324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The occurrence of gain of function mutations in STAT5B has been associated to survival, and drug resistance in Leukemia. In silico screening of compounds having inhibitory potential towards mutated proteins, can be helpful in the development of specific inhibitors.</p><p><strong>Objective: </strong>This study was designed to screen selected JAK-STAT mutations in leukemia patients and virtual exploration of molecular interaction of potential inhibitors with their mutated products.</p><p><strong>Methods: </strong>In total 276 patients were randomly recruited for this study. Demographic and clinical data were summarized. The genetic status of JAK1V623A, JAK2 S473 and STAT5BN642H were screened through allele specific PCR. In-silico analysis was performed on wild type and mutant protein sequences retrieved from Protein databank. The ligands and protein were prepared through standard protocols, and docking was performed through Auto Dock Vina 1.2.0.</p><p><strong>Results: </strong>Acute lymphoblastic leukemia comprises 70% of the total patients. Male to female ratio was 3:1. All the patients were homozygous for JAK1V623A, JAK2 S473 major allele. However, 6 patients (5 male, 1 female) with ALL were STAT5BN642H+. The molecular docking of the ligands to wild type and STAT5BN642H+revealed that AC- 4-130, Pimozide, Indirubin and Stafib-2 have higher but differential docking affinities for SH2-domain of both normal and mutated STAT5B. However, AC-4-130 has a higher affinity for wild type and Stafib-2 has stable molecular interaction with STAT5BN642H+.</p><p><strong>Conclusion: </strong>The aggressive form of pediatric leukemia, carrying STAT5BN642H+ mutation is identified in the studied population. It is predicted that AC-14-30 and stafib-2 have potential for inhibition of constitutively active STAT5B if optimized for use in combination therapy.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206350463241226032324\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206350463241226032324","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
背景:STAT5B功能突变的获得与白血病患者的生存和耐药有关。在硅筛选化合物对突变蛋白的抑制潜力,可以帮助在特定抑制剂的发展。目的:本研究旨在筛选白血病患者中选定的JAK-STAT突变,并探索潜在抑制剂与其突变产物的分子相互作用。方法:随机招募276例患者进行研究。总结人口学和临床资料。通过等位基因特异性PCR筛选JAK1V623A、JAK2 S473和STAT5BN642H基因的遗传状态。对从protein数据库中检索的野生型和突变型蛋白序列进行计算机分析。按照标准方案制备配体和蛋白,通过Auto Dock Vina 1.2.0进行对接。结果:急性淋巴细胞白血病占患者总数的70%。男女比例为3:1。所有患者均为JAK1V623A、JAK2 S473主要等位基因纯合子。然而,6例ALL患者(5男1女)为STAT5BN642H+。配体与野生型和STAT5BN642H+的分子对接表明,AC- 4-130、Pimozide、Indirubin和Stafib-2对正常型和突变型STAT5B的sh2结构域的对接亲和力较高,但存在差异。而AC-4-130对野生型具有较高的亲和力,Stafib-2与STAT5BN642H+具有稳定的分子相互作用。结论:在研究人群中发现了携带STAT5BN642H+突变的侵袭性儿童白血病。据预测,如果优化后用于联合治疗,AC-14-30和stafib-2具有抑制组成活性STAT5B的潜力。
Recurrent Missense Driver STAT5B N642H Mutation in Children Transiting into Adolescence, with Acute Lymphoid Leukemia and its In silico Inhibition.
Background: The occurrence of gain of function mutations in STAT5B has been associated to survival, and drug resistance in Leukemia. In silico screening of compounds having inhibitory potential towards mutated proteins, can be helpful in the development of specific inhibitors.
Objective: This study was designed to screen selected JAK-STAT mutations in leukemia patients and virtual exploration of molecular interaction of potential inhibitors with their mutated products.
Methods: In total 276 patients were randomly recruited for this study. Demographic and clinical data were summarized. The genetic status of JAK1V623A, JAK2 S473 and STAT5BN642H were screened through allele specific PCR. In-silico analysis was performed on wild type and mutant protein sequences retrieved from Protein databank. The ligands and protein were prepared through standard protocols, and docking was performed through Auto Dock Vina 1.2.0.
Results: Acute lymphoblastic leukemia comprises 70% of the total patients. Male to female ratio was 3:1. All the patients were homozygous for JAK1V623A, JAK2 S473 major allele. However, 6 patients (5 male, 1 female) with ALL were STAT5BN642H+. The molecular docking of the ligands to wild type and STAT5BN642H+revealed that AC- 4-130, Pimozide, Indirubin and Stafib-2 have higher but differential docking affinities for SH2-domain of both normal and mutated STAT5B. However, AC-4-130 has a higher affinity for wild type and Stafib-2 has stable molecular interaction with STAT5BN642H+.
Conclusion: The aggressive form of pediatric leukemia, carrying STAT5BN642H+ mutation is identified in the studied population. It is predicted that AC-14-30 and stafib-2 have potential for inhibition of constitutively active STAT5B if optimized for use in combination therapy.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.