基于定制深度学习模型的建筑能耗预测算法研究

Q2 Energy
Zheng Liang, Junjie Chen
{"title":"基于定制深度学习模型的建筑能耗预测算法研究","authors":"Zheng Liang,&nbsp;Junjie Chen","doi":"10.1186/s42162-025-00483-y","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasting energy usage in buildings is essential for implementing energy saving measures. Precisely forecasting building energy use is difficult due to uncertainty and noise disruption.To achieve enhanced accuracy in predicting energy use in buildings, a deep learning approach is proposed. This paper proposes a customized convolutional neural network with Q-Learning (CCNN-QL) based reinforcement learning algorithm for predicting energy consumption in building.The suggested CCNN-QL model offers an auto-learning feature that predicts building energy consumption through an automated method, continually improving its predictive accuracy.To assess its performance, various building types were selected to study the factors influencing excessive energy consumption, and data were collected from multiple Chinese cities. The suggested model’s performance has been assessed using evaluation metrics, resulting in a low Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), indicating superior accuracy relative to comparable studies. Experimental results indicate that the suggested technique has superior predictive performance across several scenarios of building energy usage.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00483-y","citationCount":"0","resultStr":"{\"title\":\"Research on building energy consumption prediction algorithm based on customized deep learning model\",\"authors\":\"Zheng Liang,&nbsp;Junjie Chen\",\"doi\":\"10.1186/s42162-025-00483-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forecasting energy usage in buildings is essential for implementing energy saving measures. Precisely forecasting building energy use is difficult due to uncertainty and noise disruption.To achieve enhanced accuracy in predicting energy use in buildings, a deep learning approach is proposed. This paper proposes a customized convolutional neural network with Q-Learning (CCNN-QL) based reinforcement learning algorithm for predicting energy consumption in building.The suggested CCNN-QL model offers an auto-learning feature that predicts building energy consumption through an automated method, continually improving its predictive accuracy.To assess its performance, various building types were selected to study the factors influencing excessive energy consumption, and data were collected from multiple Chinese cities. The suggested model’s performance has been assessed using evaluation metrics, resulting in a low Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), indicating superior accuracy relative to comparable studies. Experimental results indicate that the suggested technique has superior predictive performance across several scenarios of building energy usage.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00483-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-025-00483-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00483-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

预测建筑物的能源使用情况对于实施节能措施至关重要。由于不确定性和噪音干扰,精确预测建筑能源使用是困难的。为了提高建筑物能源使用预测的准确性,提出了一种深度学习方法。本文提出了一种基于Q-Learning (CCNN-QL)的自定义卷积神经网络强化学习算法,用于建筑能耗预测。建议的CCNN-QL模型提供了一个自动学习功能,通过自动化方法预测建筑能耗,不断提高其预测准确性。为了评估其性能,我们选择了不同的建筑类型来研究过度能耗的影响因素,并收集了中国多个城市的数据。使用评估指标对建议的模型的性能进行了评估,导致较低的平均绝对误差(MAE)和均方根误差(RMSE),表明相对于可比研究具有更高的准确性。实验结果表明,该方法在多种建筑能耗场景下均具有较好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on building energy consumption prediction algorithm based on customized deep learning model

Forecasting energy usage in buildings is essential for implementing energy saving measures. Precisely forecasting building energy use is difficult due to uncertainty and noise disruption.To achieve enhanced accuracy in predicting energy use in buildings, a deep learning approach is proposed. This paper proposes a customized convolutional neural network with Q-Learning (CCNN-QL) based reinforcement learning algorithm for predicting energy consumption in building.The suggested CCNN-QL model offers an auto-learning feature that predicts building energy consumption through an automated method, continually improving its predictive accuracy.To assess its performance, various building types were selected to study the factors influencing excessive energy consumption, and data were collected from multiple Chinese cities. The suggested model’s performance has been assessed using evaluation metrics, resulting in a low Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), indicating superior accuracy relative to comparable studies. Experimental results indicate that the suggested technique has superior predictive performance across several scenarios of building energy usage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信