多分量离散复杂短脉冲方程的环解、逆解和孤子解

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. Inam, M. ul Hassan
{"title":"多分量离散复杂短脉冲方程的环解、逆解和孤子解","authors":"A. Inam,&nbsp;M. ul Hassan","doi":"10.1134/S0040577925020047","DOIUrl":null,"url":null,"abstract":"<p> We present an integrable discretization of a multicomponent discrete complex short-pulse (dCSP) equation in terms of a Lax pair representation and a Darboux transformation (DT). The Lax pair representation is explored using block matrices by extending the <span>\\(2\\times2\\)</span> Lax matrices to <span>\\(2^L\\times2^L\\)</span> Lax matrices. The DT on the matrix solutions is studied and is used to generate solutions of the multicomponent dCSP equation by using the properties of quasideterminants. By expanding the quasideterminants, we then show the soliton solutions to be expressed as ratios of ordinary determinants. Further, an appropriate continuum limit is applied to obtain multisoliton solutions of the continuous complex short-pulse equation. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"222 2","pages":"228 - 251"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loop, cuspon, and soliton solutions of a multicomponent discrete complex short-pulse equation\",\"authors\":\"A. Inam,&nbsp;M. ul Hassan\",\"doi\":\"10.1134/S0040577925020047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We present an integrable discretization of a multicomponent discrete complex short-pulse (dCSP) equation in terms of a Lax pair representation and a Darboux transformation (DT). The Lax pair representation is explored using block matrices by extending the <span>\\\\(2\\\\times2\\\\)</span> Lax matrices to <span>\\\\(2^L\\\\times2^L\\\\)</span> Lax matrices. The DT on the matrix solutions is studied and is used to generate solutions of the multicomponent dCSP equation by using the properties of quasideterminants. By expanding the quasideterminants, we then show the soliton solutions to be expressed as ratios of ordinary determinants. Further, an appropriate continuum limit is applied to obtain multisoliton solutions of the continuous complex short-pulse equation. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"222 2\",\"pages\":\"228 - 251\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925020047\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925020047","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用Lax对表示和Darboux变换,给出了多分量离散复短脉冲方程的可积离散化方法。通过将\(2\times2\) Lax矩阵推广到\(2^L\times2^L\) Lax矩阵,利用分块矩阵探讨了Lax对的表示。研究了矩阵解上的DT,并利用拟行列式的性质生成了多分量dCSP方程的解。通过展开拟行列式,我们证明了孤子解可以用普通行列式的比值来表示。在此基础上,利用适当的连续极限得到了连续复短脉冲方程的多孤子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loop, cuspon, and soliton solutions of a multicomponent discrete complex short-pulse equation

We present an integrable discretization of a multicomponent discrete complex short-pulse (dCSP) equation in terms of a Lax pair representation and a Darboux transformation (DT). The Lax pair representation is explored using block matrices by extending the \(2\times2\) Lax matrices to \(2^L\times2^L\) Lax matrices. The DT on the matrix solutions is studied and is used to generate solutions of the multicomponent dCSP equation by using the properties of quasideterminants. By expanding the quasideterminants, we then show the soliton solutions to be expressed as ratios of ordinary determinants. Further, an appropriate continuum limit is applied to obtain multisoliton solutions of the continuous complex short-pulse equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信