用变形能比法进行数值模拟与计算的转换

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-02-15 DOI:10.1016/j.mex.2025.103221
Kirill Golubiatnikov, František Wald
{"title":"用变形能比法进行数值模拟与计算的转换","authors":"Kirill Golubiatnikov,&nbsp;František Wald","doi":"10.1016/j.mex.2025.103221","DOIUrl":null,"url":null,"abstract":"<div><div>In numerical simulations and calculations, material curves are defined in different ways. A direct transfer of quantities between them is inaccurate, requiring a proper transformation of key values. The Deformation Energy Ratio approach is based on well-established mechanical principles, such as Neuber's rule and the Equivalent Strain Energy Density method, which express deformation energy as a function of stress and strain. This approach accounts for material conditions in both analyses and enables a more precise limit adjustment. Its simplicity allows for application in both analytical and numerical solutions.<ul><li><span>•</span><span><div>Allows conversion of values between numerical simulation and calculation for any steel.</div></span></li><li><span>•</span><span><div>It takes into account the influence of material properties, thus comprehensively considering the effects of different factors.</div></span></li><li><span>•</span><span><div>The verification has presented a high accuracy of the values obtained. The average deviation is &lt;5.0 % and the maximum deviation is 5.6 %.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103221"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversion between the numerical simulation and the calculation using the Deformation Energy Ratio approach\",\"authors\":\"Kirill Golubiatnikov,&nbsp;František Wald\",\"doi\":\"10.1016/j.mex.2025.103221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In numerical simulations and calculations, material curves are defined in different ways. A direct transfer of quantities between them is inaccurate, requiring a proper transformation of key values. The Deformation Energy Ratio approach is based on well-established mechanical principles, such as Neuber's rule and the Equivalent Strain Energy Density method, which express deformation energy as a function of stress and strain. This approach accounts for material conditions in both analyses and enables a more precise limit adjustment. Its simplicity allows for application in both analytical and numerical solutions.<ul><li><span>•</span><span><div>Allows conversion of values between numerical simulation and calculation for any steel.</div></span></li><li><span>•</span><span><div>It takes into account the influence of material properties, thus comprehensively considering the effects of different factors.</div></span></li><li><span>•</span><span><div>The verification has presented a high accuracy of the values obtained. The average deviation is &lt;5.0 % and the maximum deviation is 5.6 %.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"14 \",\"pages\":\"Article 103221\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125000688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在数值模拟和计算中,材料曲线以不同的方式定义。在它们之间直接转换数量是不准确的,需要对关键值进行适当的转换。变形能比法是基于公认的力学原理,如Neuber规则和等效应变能密度法,将变形能表示为应力和应变的函数。这种方法考虑了两种分析中的物质条件,并能够进行更精确的极限调整。它的简单性允许在解析解和数值解中应用。•允许数值模拟和任何钢计算之间的值转换。•考虑到材料性能的影响,从而综合考虑不同因素的影响。•验证表明所获得的值具有很高的准确性。平均偏差为5.0%,最大偏差为5.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conversion between the numerical simulation and the calculation using the Deformation Energy Ratio approach

Conversion between the numerical simulation and the calculation using the Deformation Energy Ratio approach
In numerical simulations and calculations, material curves are defined in different ways. A direct transfer of quantities between them is inaccurate, requiring a proper transformation of key values. The Deformation Energy Ratio approach is based on well-established mechanical principles, such as Neuber's rule and the Equivalent Strain Energy Density method, which express deformation energy as a function of stress and strain. This approach accounts for material conditions in both analyses and enables a more precise limit adjustment. Its simplicity allows for application in both analytical and numerical solutions.
  • Allows conversion of values between numerical simulation and calculation for any steel.
  • It takes into account the influence of material properties, thus comprehensively considering the effects of different factors.
  • The verification has presented a high accuracy of the values obtained. The average deviation is <5.0 % and the maximum deviation is 5.6 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信