对于树和共树的双中间逻辑,局部表性是可判定的

IF 0.6 2区 数学 Q2 LOGIC
Miguel Martins, Tommaso Moraschini
{"title":"对于树和共树的双中间逻辑,局部表性是可判定的","authors":"Miguel Martins,&nbsp;Tommaso Moraschini","doi":"10.1016/j.apal.2025.103563","DOIUrl":null,"url":null,"abstract":"<div><div>A bi-Heyting algebra validates the Gödel-Dummett axiom <span><math><mo>(</mo><mi>p</mi><mo>→</mo><mi>q</mi><mo>)</mo><mo>∨</mo><mo>(</mo><mi>q</mi><mo>→</mo><mi>p</mi><mo>)</mo></math></span> iff the poset of its prime filters is a disjoint union of co-trees (i.e., order duals of trees). Bi-Heyting algebras of this kind are called <em>bi-Gödel algebras</em> and form a variety that algebraizes the extension <span><math><mi>bi-GD</mi></math></span> of bi-intuitionistic logic axiomatized by the Gödel-Dummett axiom. In this paper we establish the decidability of the problem of determining if a finitely axiomatizable extension of <span><math><mi>bi-GD</mi></math></span> is locally tabular.</div><div>Notably, if <em>L</em> is an axiomatic extension of <span><math><mi>bi-GD</mi></math></span>, then <em>L</em> is locally tabular iff <em>L</em> is not contained in <span><math><mi>L</mi><mi>o</mi><mi>g</mi><mo>(</mo><mi>F</mi><mi>C</mi><mo>)</mo></math></span>, the logic of a particular family of finite co-trees, called the <em>finite combs</em>. We prove that <span><math><mi>L</mi><mi>o</mi><mi>g</mi><mo>(</mo><mi>F</mi><mi>C</mi><mo>)</mo></math></span> is finitely axiomatizable. Since this logic also has the finite model property, it is therefore decidable. Thus, the above characterization of local tabularity ensures the decidability of the aforementioned problem.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 5","pages":"Article 103563"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local tabularity is decidable for bi-intermediate logics of trees and of co-trees\",\"authors\":\"Miguel Martins,&nbsp;Tommaso Moraschini\",\"doi\":\"10.1016/j.apal.2025.103563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A bi-Heyting algebra validates the Gödel-Dummett axiom <span><math><mo>(</mo><mi>p</mi><mo>→</mo><mi>q</mi><mo>)</mo><mo>∨</mo><mo>(</mo><mi>q</mi><mo>→</mo><mi>p</mi><mo>)</mo></math></span> iff the poset of its prime filters is a disjoint union of co-trees (i.e., order duals of trees). Bi-Heyting algebras of this kind are called <em>bi-Gödel algebras</em> and form a variety that algebraizes the extension <span><math><mi>bi-GD</mi></math></span> of bi-intuitionistic logic axiomatized by the Gödel-Dummett axiom. In this paper we establish the decidability of the problem of determining if a finitely axiomatizable extension of <span><math><mi>bi-GD</mi></math></span> is locally tabular.</div><div>Notably, if <em>L</em> is an axiomatic extension of <span><math><mi>bi-GD</mi></math></span>, then <em>L</em> is locally tabular iff <em>L</em> is not contained in <span><math><mi>L</mi><mi>o</mi><mi>g</mi><mo>(</mo><mi>F</mi><mi>C</mi><mo>)</mo></math></span>, the logic of a particular family of finite co-trees, called the <em>finite combs</em>. We prove that <span><math><mi>L</mi><mi>o</mi><mi>g</mi><mo>(</mo><mi>F</mi><mi>C</mi><mo>)</mo></math></span> is finitely axiomatizable. Since this logic also has the finite model property, it is therefore decidable. Thus, the above characterization of local tabularity ensures the decidability of the aforementioned problem.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 5\",\"pages\":\"Article 103563\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007225000120\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000120","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

一个bi-Heyting代数如果它的素滤波器的偏序集是余树的不相交并(即树的序对偶),则对合验证Gödel-Dummett公理(p→q)这类Bi-Heyting代数称为bi-Gödel代数,它构成了由Gödel-Dummett公理公化的双直觉逻辑的扩展bi-GD代数的一个变种。本文建立了确定bi-GD的有限公理化扩展是否局部列表问题的可判定性。值得注意的是,如果L是bi-GD的公理扩展,那么如果L不包含在Log(FC)中,则L是局部表列的,Log(FC)是一组特定的有限余树的逻辑,称为有限梳。证明了Log(FC)是有限公理化的。由于这种逻辑也具有有限模型性质,因此它是可决定的。因此,上述局部表性的表征保证了上述问题的可判定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local tabularity is decidable for bi-intermediate logics of trees and of co-trees
A bi-Heyting algebra validates the Gödel-Dummett axiom (pq)(qp) iff the poset of its prime filters is a disjoint union of co-trees (i.e., order duals of trees). Bi-Heyting algebras of this kind are called bi-Gödel algebras and form a variety that algebraizes the extension bi-GD of bi-intuitionistic logic axiomatized by the Gödel-Dummett axiom. In this paper we establish the decidability of the problem of determining if a finitely axiomatizable extension of bi-GD is locally tabular.
Notably, if L is an axiomatic extension of bi-GD, then L is locally tabular iff L is not contained in Log(FC), the logic of a particular family of finite co-trees, called the finite combs. We prove that Log(FC) is finitely axiomatizable. Since this logic also has the finite model property, it is therefore decidable. Thus, the above characterization of local tabularity ensures the decidability of the aforementioned problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信