利用多类杂草分类解决三维高光谱图像深度学习训练相关的计算资源耗尽问题

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Billy G. Ram , Kirk Howatt , Joseph Mettler , Xin Sun
{"title":"利用多类杂草分类解决三维高光谱图像深度学习训练相关的计算资源耗尽问题","authors":"Billy G. Ram ,&nbsp;Kirk Howatt ,&nbsp;Joseph Mettler ,&nbsp;Xin Sun","doi":"10.1016/j.aiia.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the computational bottleneck of training deep learning models on high-resolution, three-dimensional images, this study introduces an optimized approach, combining distributed learning (parallelism), image resolution, and data augmentation. We propose analysis methodologies that help train deep learning (DL) models on proximal hyperspectral images, demonstrating superior performance in eight-class crop (canola, field pea, sugarbeet and flax) and weed (redroot pigweed, resistant kochia, waterhemp and ragweed) classification. Utilizing state-of-the-art model architectures (ResNet-50, VGG-16, DenseNet, EfficientNet) in comparison with ResNet-50 inspired Hyper-Residual Convolutional Neural Network model. Our findings reveal that an image resolution of 100x100x54 maximizes accuracy while maintaining computational efficiency, surpassing the performance of 150x150x54 and 50x50x54 resolution images. By employing data parallelism, we overcome system memory limitations and achieve exceptional classification results, with test accuracies and F1-scores reaching 0.96 and 0.97, respectively. This research highlights the potential of residual-based networks for analyzing hyperspectral images. It offers valuable insights into optimizing deep learning models in resource-constrained environments. The research presents detailed training pipelines for deep learning models that utilize large (&gt; 4k) hyperspectral training samples, including background and without any data preprocessing. This approach enables the training of deep learning models directly on raw hyperspectral data.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 131-146"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing computation resource exhaustion associated with deep learning training of three-dimensional hyperspectral images using multiclass weed classification\",\"authors\":\"Billy G. Ram ,&nbsp;Kirk Howatt ,&nbsp;Joseph Mettler ,&nbsp;Xin Sun\",\"doi\":\"10.1016/j.aiia.2025.02.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Addressing the computational bottleneck of training deep learning models on high-resolution, three-dimensional images, this study introduces an optimized approach, combining distributed learning (parallelism), image resolution, and data augmentation. We propose analysis methodologies that help train deep learning (DL) models on proximal hyperspectral images, demonstrating superior performance in eight-class crop (canola, field pea, sugarbeet and flax) and weed (redroot pigweed, resistant kochia, waterhemp and ragweed) classification. Utilizing state-of-the-art model architectures (ResNet-50, VGG-16, DenseNet, EfficientNet) in comparison with ResNet-50 inspired Hyper-Residual Convolutional Neural Network model. Our findings reveal that an image resolution of 100x100x54 maximizes accuracy while maintaining computational efficiency, surpassing the performance of 150x150x54 and 50x50x54 resolution images. By employing data parallelism, we overcome system memory limitations and achieve exceptional classification results, with test accuracies and F1-scores reaching 0.96 and 0.97, respectively. This research highlights the potential of residual-based networks for analyzing hyperspectral images. It offers valuable insights into optimizing deep learning models in resource-constrained environments. The research presents detailed training pipelines for deep learning models that utilize large (&gt; 4k) hyperspectral training samples, including background and without any data preprocessing. This approach enables the training of deep learning models directly on raw hyperspectral data.</div></div>\",\"PeriodicalId\":52814,\"journal\":{\"name\":\"Artificial Intelligence in Agriculture\",\"volume\":\"15 2\",\"pages\":\"Pages 131-146\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Agriculture\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589721725000248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了解决在高分辨率三维图像上训练深度学习模型的计算瓶颈,本研究引入了一种优化方法,将分布式学习(并行)、图像分辨率和数据增强相结合。我们提出的分析方法有助于在近端高光谱图像上训练深度学习(DL)模型,在八类作物(油菜籽、豌豆、甜菜和亚麻)和杂草(红根藜、抗性土匪、水麻和豚草)分类中显示出卓越的性能。利用最先进的模型架构(ResNet-50, VGG-16, DenseNet, EfficientNet)与ResNet-50启发的超残差卷积神经网络模型进行比较。我们的研究结果表明,100x100x54的图像分辨率在保持计算效率的同时最大限度地提高了精度,超过了150x150x54和50x50x54分辨率图像的性能。通过使用数据并行性,我们克服了系统内存的限制,取得了优异的分类效果,测试准确率和f1分数分别达到0.96和0.97。这项研究突出了残差网络分析高光谱图像的潜力。它为在资源受限的环境中优化深度学习模型提供了有价值的见解。该研究为深度学习模型提供了详细的训练管道,这些模型利用大量的(>;4k)高光谱训练样本,包括背景和未经任何数据预处理。这种方法可以直接在原始高光谱数据上训练深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing computation resource exhaustion associated with deep learning training of three-dimensional hyperspectral images using multiclass weed classification
Addressing the computational bottleneck of training deep learning models on high-resolution, three-dimensional images, this study introduces an optimized approach, combining distributed learning (parallelism), image resolution, and data augmentation. We propose analysis methodologies that help train deep learning (DL) models on proximal hyperspectral images, demonstrating superior performance in eight-class crop (canola, field pea, sugarbeet and flax) and weed (redroot pigweed, resistant kochia, waterhemp and ragweed) classification. Utilizing state-of-the-art model architectures (ResNet-50, VGG-16, DenseNet, EfficientNet) in comparison with ResNet-50 inspired Hyper-Residual Convolutional Neural Network model. Our findings reveal that an image resolution of 100x100x54 maximizes accuracy while maintaining computational efficiency, surpassing the performance of 150x150x54 and 50x50x54 resolution images. By employing data parallelism, we overcome system memory limitations and achieve exceptional classification results, with test accuracies and F1-scores reaching 0.96 and 0.97, respectively. This research highlights the potential of residual-based networks for analyzing hyperspectral images. It offers valuable insights into optimizing deep learning models in resource-constrained environments. The research presents detailed training pipelines for deep learning models that utilize large (> 4k) hyperspectral training samples, including background and without any data preprocessing. This approach enables the training of deep learning models directly on raw hyperspectral data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信