{"title":"基于多尺度策略的 PINN,用于求解纳维-斯托克斯方程","authors":"Shirong Li , Shaoyong Lai","doi":"10.1016/j.rinam.2024.100526","DOIUrl":null,"url":null,"abstract":"<div><div>Neural networks combined with automatic differentiation technology provide a fundamental framework for the numerical solution of partial differential equations. This framework constitutes a loss function driven by both data and physical models, significantly enhancing generalization capabilities. Combining the framework and the idea of multi-scale methods in traditional numerical methods, such as domain decomposition and collocation self-adaption, we construct a method of the Physics-Informed Neural Networks (PINNs) based on multi-scale strategy to solve Navier–Stokes equations, and the results are more effective than XPINNs and SAPINNs. The computational efficiency of the proposed method is verified by solving two-dimensional and three-dimensional Navier–Stokes equations.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100526"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PINN based on multi-scale strategy for solving Navier–Stokes equation\",\"authors\":\"Shirong Li , Shaoyong Lai\",\"doi\":\"10.1016/j.rinam.2024.100526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neural networks combined with automatic differentiation technology provide a fundamental framework for the numerical solution of partial differential equations. This framework constitutes a loss function driven by both data and physical models, significantly enhancing generalization capabilities. Combining the framework and the idea of multi-scale methods in traditional numerical methods, such as domain decomposition and collocation self-adaption, we construct a method of the Physics-Informed Neural Networks (PINNs) based on multi-scale strategy to solve Navier–Stokes equations, and the results are more effective than XPINNs and SAPINNs. The computational efficiency of the proposed method is verified by solving two-dimensional and three-dimensional Navier–Stokes equations.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"25 \",\"pages\":\"Article 100526\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
PINN based on multi-scale strategy for solving Navier–Stokes equation
Neural networks combined with automatic differentiation technology provide a fundamental framework for the numerical solution of partial differential equations. This framework constitutes a loss function driven by both data and physical models, significantly enhancing generalization capabilities. Combining the framework and the idea of multi-scale methods in traditional numerical methods, such as domain decomposition and collocation self-adaption, we construct a method of the Physics-Informed Neural Networks (PINNs) based on multi-scale strategy to solve Navier–Stokes equations, and the results are more effective than XPINNs and SAPINNs. The computational efficiency of the proposed method is verified by solving two-dimensional and three-dimensional Navier–Stokes equations.