奈比洛尔对bfgf诱导的血管平滑肌细胞增殖和迁移的影响机制

Q2 Agricultural and Biological Sciences
Elaina Seemann, Trevor Beeler, Mohammed Alfarra, Mark Cosio, Charles Chan, Peyton Grant, Yingzi Chang
{"title":"奈比洛尔对bfgf诱导的血管平滑肌细胞增殖和迁移的影响机制","authors":"Elaina Seemann,&nbsp;Trevor Beeler,&nbsp;Mohammed Alfarra,&nbsp;Mark Cosio,&nbsp;Charles Chan,&nbsp;Peyton Grant,&nbsp;Yingzi Chang","doi":"10.1016/j.crphar.2025.100214","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Nebivolol is a β-adrenergic receptor antagonist that has intrinsic activity on β<sub>3</sub>-adrenergic receptors (β<sub>3</sub>-ARs). Previous studies suggest that nebivolol inhibits bFGF-induced vascular smooth muscle cell (VSMC) proliferation and migration and vascular injury-induced neointima formation through activation of β<sub>3</sub>-ARs. However, our recently published data shown that activation of β<sub>3</sub>-ARs produced the opposite results, suggesting that the mechanisms of nebivolol-mediated effects are not fully understood. The current project was to study the mechanisms of nebivolol’s effects on bFGF-induced VSMC proliferation and migration by comparing to the selective β<sub>3</sub>-AR agonist, CL316,243.</div></div><div><h3>Methods</h3><div>VSMCs isolated from Sprague Dawley rat aortas were pretreated with nebivolol or CL316,243 followed by stimulation with bFGF. Cell proliferation and migration and phosphorylation of ERK and AKT were measured.</div></div><div><h3>Results</h3><div>We found that pretreatment of VSMCs with nebivolol produced biphasic effects on bFGF-induced VSMC proliferation, manifested as potentiation at lower concentrations and inhibition at the higher concentration. The effects of low concentrations of nebivolol on bFGF-induced VSMC proliferation was blocked by the selective β<sub>3</sub>-AR antagonist, SR59230A. Nebivolol inhibited bFGF-induced cell migration at all concentrations tested. In addition, only higher concentrations of nebivolol significantly inhibited bFGF-induced AKT phosphorylation but not ERK phosphorylation whereas CL316,243 at all concentrations tested significantly enhanced bFGF-induced VSMC proliferation and migration and higher concentrations of CL316,243 not only enhanced bFGF-induced AKT phosphorylation but also ERK phosphorylation.</div></div><div><h3>Conclusion</h3><div>Our data suggest that the effect of nebivolol on bFGF-induced cell proliferation is concentration-dependent. The enhancement on bFGF-induced cell proliferation at lower concentrations appears to be mainly mediated by activation of β<sub>3</sub>-ARs but the inhibitory effects on bFGF-mediated cell proliferation as well as migration may occur through different mechanisms. AKT signaling is only involved in high concentrations of nebivolol-mediated effects.</div></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"8 ","pages":"Article 100214"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of nebivolol-mediated effects on bFGF-induced vascular smooth muscle cell proliferation and migration\",\"authors\":\"Elaina Seemann,&nbsp;Trevor Beeler,&nbsp;Mohammed Alfarra,&nbsp;Mark Cosio,&nbsp;Charles Chan,&nbsp;Peyton Grant,&nbsp;Yingzi Chang\",\"doi\":\"10.1016/j.crphar.2025.100214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Nebivolol is a β-adrenergic receptor antagonist that has intrinsic activity on β<sub>3</sub>-adrenergic receptors (β<sub>3</sub>-ARs). Previous studies suggest that nebivolol inhibits bFGF-induced vascular smooth muscle cell (VSMC) proliferation and migration and vascular injury-induced neointima formation through activation of β<sub>3</sub>-ARs. However, our recently published data shown that activation of β<sub>3</sub>-ARs produced the opposite results, suggesting that the mechanisms of nebivolol-mediated effects are not fully understood. The current project was to study the mechanisms of nebivolol’s effects on bFGF-induced VSMC proliferation and migration by comparing to the selective β<sub>3</sub>-AR agonist, CL316,243.</div></div><div><h3>Methods</h3><div>VSMCs isolated from Sprague Dawley rat aortas were pretreated with nebivolol or CL316,243 followed by stimulation with bFGF. Cell proliferation and migration and phosphorylation of ERK and AKT were measured.</div></div><div><h3>Results</h3><div>We found that pretreatment of VSMCs with nebivolol produced biphasic effects on bFGF-induced VSMC proliferation, manifested as potentiation at lower concentrations and inhibition at the higher concentration. The effects of low concentrations of nebivolol on bFGF-induced VSMC proliferation was blocked by the selective β<sub>3</sub>-AR antagonist, SR59230A. Nebivolol inhibited bFGF-induced cell migration at all concentrations tested. In addition, only higher concentrations of nebivolol significantly inhibited bFGF-induced AKT phosphorylation but not ERK phosphorylation whereas CL316,243 at all concentrations tested significantly enhanced bFGF-induced VSMC proliferation and migration and higher concentrations of CL316,243 not only enhanced bFGF-induced AKT phosphorylation but also ERK phosphorylation.</div></div><div><h3>Conclusion</h3><div>Our data suggest that the effect of nebivolol on bFGF-induced cell proliferation is concentration-dependent. The enhancement on bFGF-induced cell proliferation at lower concentrations appears to be mainly mediated by activation of β<sub>3</sub>-ARs but the inhibitory effects on bFGF-mediated cell proliferation as well as migration may occur through different mechanisms. AKT signaling is only involved in high concentrations of nebivolol-mediated effects.</div></div>\",\"PeriodicalId\":10877,\"journal\":{\"name\":\"Current Research in Pharmacology and Drug Discovery\",\"volume\":\"8 \",\"pages\":\"Article 100214\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Pharmacology and Drug Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590257125000021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Pharmacology and Drug Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590257125000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

nebivolol是一种β-肾上腺素能受体拮抗剂,对β3-肾上腺素能受体(β3-ARs)具有内在活性。既往研究表明,奈比洛尔通过激活β3-ARs抑制bfgf诱导的血管平滑肌细胞(vascular smooth muscle cell, VSMC)的增殖和迁移以及血管损伤诱导的新生内膜形成。然而,我们最近发表的数据显示,β3-ARs的激活产生了相反的结果,这表明奈比沃罗介导的作用机制尚不完全清楚。本课题拟通过与选择性β3-AR激动剂CL316,243进行比较,研究奈比洛尔对bfgf诱导的VSMC增殖和迁移的影响机制。方法用奈比洛尔或cl316243预处理sd大鼠主动脉svsmcs,再用bFGF刺激。检测细胞增殖、迁移及ERK、AKT的磷酸化水平。结果奈比洛尔对bfgf诱导的VSMC增殖具有双相作用,低浓度时呈增强作用,高浓度时呈抑制作用。低浓度奈比洛尔对bfgf诱导的VSMC增殖的影响被选择性β3-AR拮抗剂SR59230A阻断。内比洛尔在所有浓度下均抑制bfgf诱导的细胞迁移。此外,只有较高浓度的奈比洛尔能显著抑制bfgf诱导的AKT磷酸化,而对ERK磷酸化无显著抑制作用,而所有浓度的cl316243均能显著增强bfgf诱导的VSMC增殖和迁移,较高浓度的cl316243不仅能增强bfgf诱导的AKT磷酸化,还能增强ERK磷酸化。结论奈比洛尔对bfgf诱导的细胞增殖的影响呈浓度依赖性。低浓度下对bfgf诱导的细胞增殖的增强似乎主要是通过激活β3-ARs介导的,但对bfgf介导的细胞增殖和迁移的抑制作用可能通过不同的机制发生。AKT信号只参与高浓度奈比沃罗介导的效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanisms of nebivolol-mediated effects on bFGF-induced vascular smooth muscle cell proliferation and migration

Mechanisms of nebivolol-mediated effects on bFGF-induced vascular smooth muscle cell proliferation and migration

Background

Nebivolol is a β-adrenergic receptor antagonist that has intrinsic activity on β3-adrenergic receptors (β3-ARs). Previous studies suggest that nebivolol inhibits bFGF-induced vascular smooth muscle cell (VSMC) proliferation and migration and vascular injury-induced neointima formation through activation of β3-ARs. However, our recently published data shown that activation of β3-ARs produced the opposite results, suggesting that the mechanisms of nebivolol-mediated effects are not fully understood. The current project was to study the mechanisms of nebivolol’s effects on bFGF-induced VSMC proliferation and migration by comparing to the selective β3-AR agonist, CL316,243.

Methods

VSMCs isolated from Sprague Dawley rat aortas were pretreated with nebivolol or CL316,243 followed by stimulation with bFGF. Cell proliferation and migration and phosphorylation of ERK and AKT were measured.

Results

We found that pretreatment of VSMCs with nebivolol produced biphasic effects on bFGF-induced VSMC proliferation, manifested as potentiation at lower concentrations and inhibition at the higher concentration. The effects of low concentrations of nebivolol on bFGF-induced VSMC proliferation was blocked by the selective β3-AR antagonist, SR59230A. Nebivolol inhibited bFGF-induced cell migration at all concentrations tested. In addition, only higher concentrations of nebivolol significantly inhibited bFGF-induced AKT phosphorylation but not ERK phosphorylation whereas CL316,243 at all concentrations tested significantly enhanced bFGF-induced VSMC proliferation and migration and higher concentrations of CL316,243 not only enhanced bFGF-induced AKT phosphorylation but also ERK phosphorylation.

Conclusion

Our data suggest that the effect of nebivolol on bFGF-induced cell proliferation is concentration-dependent. The enhancement on bFGF-induced cell proliferation at lower concentrations appears to be mainly mediated by activation of β3-ARs but the inhibitory effects on bFGF-mediated cell proliferation as well as migration may occur through different mechanisms. AKT signaling is only involved in high concentrations of nebivolol-mediated effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Pharmacology and Drug Discovery
Current Research in Pharmacology and Drug Discovery Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
6.40
自引率
0.00%
发文量
65
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信