膜结合超氧化物氧化酶中质子偶联醌还原的分子原理

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Daniel Riepl, Abbas Abou-Hamdan, Jonas Gellner, Olivier Biner, Dan Sjöstrand, Martin Högbom, Christoph von Ballmoos* and Ville R. I. Kaila*, 
{"title":"膜结合超氧化物氧化酶中质子偶联醌还原的分子原理","authors":"Daniel Riepl,&nbsp;Abbas Abou-Hamdan,&nbsp;Jonas Gellner,&nbsp;Olivier Biner,&nbsp;Dan Sjöstrand,&nbsp;Martin Högbom,&nbsp;Christoph von Ballmoos* and Ville R. I. Kaila*,&nbsp;","doi":"10.1021/jacs.4c1705510.1021/jacs.4c17055","DOIUrl":null,"url":null,"abstract":"<p >Reactive oxygen species (ROS) are physiologically harmful radical species generated as byproducts of aerobic respiration. To detoxify ROS, most cells employ superoxide scavenging enzymes that disproportionate superoxide (O<sub>2</sub><sup>·–</sup>) to oxygen (O<sub>2</sub>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). In contrast, the membrane-bound superoxide oxidase (SOO) is a minimal 4-helical bundle protein that catalyzes the direct oxidation of O<sub>2</sub><sup>·–</sup> to O<sub>2</sub> and drives quinone reduction by mechanistic principles that remain unknown. Here, we combine multiscale hybrid quantum/classical (QM/MM) free energy calculations and microsecond molecular dynamics simulations with functional assays and site-directed mutagenesis experiments to probe the mechanistic principles underlying the charge transfer reactions of the superoxide-driven quinone reduction. We characterize a cluster of charged residues at the periplasmic side of the membrane that functions as a O<sub>2</sub><sup>·–</sup> collecting antenna, initiating electron transfer via two <i>b</i> hemes to the active site for quinone reduction at the cytoplasmic side. Based on multidimensional QM/MM string simulations, we find that a proton-coupled electron transfer (PCET) reaction from the active site heme <i>b</i> and nearby histidine residues (H87, H158) results in quinol (QH<sub>2</sub>) formation, followed by proton uptake from the cytoplasmic side of the membrane. The functional relevance of the identified residues is supported by site-directed mutagenesis and activity assays, with mutations leading to inhibition of the O<sub>2</sub><sup>·–</sup>-driven quinone reduction activity. We suggest that the charge transfer reactions could build up a proton motive force that supports the bacterial energy transduction machinery, while the PCET machinery provides unique design principles of a minimal oxidoreductase.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 8","pages":"6866–6879 6866–6879"},"PeriodicalIF":15.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c17055","citationCount":"0","resultStr":"{\"title\":\"Molecular Principles of Proton-Coupled Quinone Reduction in the Membrane-Bound Superoxide Oxidase\",\"authors\":\"Daniel Riepl,&nbsp;Abbas Abou-Hamdan,&nbsp;Jonas Gellner,&nbsp;Olivier Biner,&nbsp;Dan Sjöstrand,&nbsp;Martin Högbom,&nbsp;Christoph von Ballmoos* and Ville R. I. Kaila*,&nbsp;\",\"doi\":\"10.1021/jacs.4c1705510.1021/jacs.4c17055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Reactive oxygen species (ROS) are physiologically harmful radical species generated as byproducts of aerobic respiration. To detoxify ROS, most cells employ superoxide scavenging enzymes that disproportionate superoxide (O<sub>2</sub><sup>·–</sup>) to oxygen (O<sub>2</sub>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). In contrast, the membrane-bound superoxide oxidase (SOO) is a minimal 4-helical bundle protein that catalyzes the direct oxidation of O<sub>2</sub><sup>·–</sup> to O<sub>2</sub> and drives quinone reduction by mechanistic principles that remain unknown. Here, we combine multiscale hybrid quantum/classical (QM/MM) free energy calculations and microsecond molecular dynamics simulations with functional assays and site-directed mutagenesis experiments to probe the mechanistic principles underlying the charge transfer reactions of the superoxide-driven quinone reduction. We characterize a cluster of charged residues at the periplasmic side of the membrane that functions as a O<sub>2</sub><sup>·–</sup> collecting antenna, initiating electron transfer via two <i>b</i> hemes to the active site for quinone reduction at the cytoplasmic side. Based on multidimensional QM/MM string simulations, we find that a proton-coupled electron transfer (PCET) reaction from the active site heme <i>b</i> and nearby histidine residues (H87, H158) results in quinol (QH<sub>2</sub>) formation, followed by proton uptake from the cytoplasmic side of the membrane. The functional relevance of the identified residues is supported by site-directed mutagenesis and activity assays, with mutations leading to inhibition of the O<sub>2</sub><sup>·–</sup>-driven quinone reduction activity. We suggest that the charge transfer reactions could build up a proton motive force that supports the bacterial energy transduction machinery, while the PCET machinery provides unique design principles of a minimal oxidoreductase.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 8\",\"pages\":\"6866–6879 6866–6879\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c17055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c17055\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c17055","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

活性氧(ROS)是有氧呼吸过程中产生的有害自由基。为了解毒ROS,大多数细胞使用超氧化物清除酶,使超氧化物(O2·-)与氧(O2)和过氧化氢(H2O2)不成比例。相比之下,膜结合的超氧化物氧化酶(SOO)是一种最小的4螺旋束蛋白,它催化O2·-直接氧化成O2,并通过尚不清楚的机制原理驱动醌还原。本文将多尺度混合量子/经典(QM/MM)自由能计算和微秒分子动力学模拟与功能分析和位点定向诱变实验相结合,探讨了超氧化物驱动醌还原的电荷转移反应的机制原理。我们描述了膜周围质侧的一簇带电残基,其功能是作为O2·收集天线,通过两个b血红素启动电子转移到细胞质侧的活性位点进行醌还原。基于多维QM/MM链模拟,我们发现活性位点血红素b和附近的组氨酸残基(H87, H158)的质子耦合电子转移(PCET)反应导致喹诺(QH2)的形成,然后从膜的细胞质侧摄取质子。位点定向诱变和活性分析支持了鉴定残基的功能相关性,突变导致O2·驱动的醌还原活性受到抑制。我们认为电荷转移反应可以建立质子动力,支持细菌能量转导机制,而PCET机制提供了最小氧化还原酶的独特设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Principles of Proton-Coupled Quinone Reduction in the Membrane-Bound Superoxide Oxidase

Reactive oxygen species (ROS) are physiologically harmful radical species generated as byproducts of aerobic respiration. To detoxify ROS, most cells employ superoxide scavenging enzymes that disproportionate superoxide (O2·–) to oxygen (O2) and hydrogen peroxide (H2O2). In contrast, the membrane-bound superoxide oxidase (SOO) is a minimal 4-helical bundle protein that catalyzes the direct oxidation of O2·– to O2 and drives quinone reduction by mechanistic principles that remain unknown. Here, we combine multiscale hybrid quantum/classical (QM/MM) free energy calculations and microsecond molecular dynamics simulations with functional assays and site-directed mutagenesis experiments to probe the mechanistic principles underlying the charge transfer reactions of the superoxide-driven quinone reduction. We characterize a cluster of charged residues at the periplasmic side of the membrane that functions as a O2·– collecting antenna, initiating electron transfer via two b hemes to the active site for quinone reduction at the cytoplasmic side. Based on multidimensional QM/MM string simulations, we find that a proton-coupled electron transfer (PCET) reaction from the active site heme b and nearby histidine residues (H87, H158) results in quinol (QH2) formation, followed by proton uptake from the cytoplasmic side of the membrane. The functional relevance of the identified residues is supported by site-directed mutagenesis and activity assays, with mutations leading to inhibition of the O2·–-driven quinone reduction activity. We suggest that the charge transfer reactions could build up a proton motive force that supports the bacterial energy transduction machinery, while the PCET machinery provides unique design principles of a minimal oxidoreductase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信