Yuanli Zuo, Yang Jin, Gang Li, Yue Ming, Ting Fan, Yitong Pan, Xiaojun Yao, Yong Peng
{"title":"伴HIV感染的食管鳞状细胞癌肿瘤微环境的空间转录组学分析","authors":"Yuanli Zuo, Yang Jin, Gang Li, Yue Ming, Ting Fan, Yitong Pan, Xiaojun Yao, Yong Peng","doi":"10.1186/s12943-025-02248-3","DOIUrl":null,"url":null,"abstract":"Human Immunodeficiency Virus (HIV) is one of the most prevalent viruses, causing significant immune depletion in affected individuals. Current treatments can control HIV and prolong patients’ lives, but new challenges have emerged. Increasing incidence of cancers occur in HIV patients. Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers observed in HIV patients. However, the spatial cellular characteristics of HIV-related ESCC have not been explored, and the differences between HIV-ESCC and typical ESCC remain unclear. We performed spatial transcriptome sequencing on HIV-ESCC samples to depict the microenvironment and employed cell communication analysis and multiplex immunofluorescence to investigate the molecular mechanism in HIV-ESCC. We found that HIV-ESCC exhibited a unique cellular composition, with fibroblasts and epithelial cells intermixed throughout the tumor tissue, lacking obvious spatial separation, while other cell types were sparse. Besides, HIV-ESCC exhibited an immune desert phenotype, characterized by a low degree of immune cell infiltration, with only a few SPP1+ macrophages showing immune resistance functions. Cell communication analysis and multiplex immunofluorescence staining revealed that tumor fibroblasts in HIV-ESCC interact with CD44+ epithelial cells via COL1A2, promoting the expression of PIK3R1 in epithelial cells. This interaction activates the PI3K-AKT signaling pathway, which contributes to the progression of HIV-ESCC. Our findings depict the spatial microenvironment of HIV-ESCC and elucidate a molecular mechanism in the progression of HIV-ESCC. This will provide us insights into the molecular basis of HIV-ESCC and potential treatment strategies.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"14 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial transcriptomic analysis of tumor microenvironment in esophageal squamous cell carcinoma with HIV infection\",\"authors\":\"Yuanli Zuo, Yang Jin, Gang Li, Yue Ming, Ting Fan, Yitong Pan, Xiaojun Yao, Yong Peng\",\"doi\":\"10.1186/s12943-025-02248-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human Immunodeficiency Virus (HIV) is one of the most prevalent viruses, causing significant immune depletion in affected individuals. Current treatments can control HIV and prolong patients’ lives, but new challenges have emerged. Increasing incidence of cancers occur in HIV patients. Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers observed in HIV patients. However, the spatial cellular characteristics of HIV-related ESCC have not been explored, and the differences between HIV-ESCC and typical ESCC remain unclear. We performed spatial transcriptome sequencing on HIV-ESCC samples to depict the microenvironment and employed cell communication analysis and multiplex immunofluorescence to investigate the molecular mechanism in HIV-ESCC. We found that HIV-ESCC exhibited a unique cellular composition, with fibroblasts and epithelial cells intermixed throughout the tumor tissue, lacking obvious spatial separation, while other cell types were sparse. Besides, HIV-ESCC exhibited an immune desert phenotype, characterized by a low degree of immune cell infiltration, with only a few SPP1+ macrophages showing immune resistance functions. Cell communication analysis and multiplex immunofluorescence staining revealed that tumor fibroblasts in HIV-ESCC interact with CD44+ epithelial cells via COL1A2, promoting the expression of PIK3R1 in epithelial cells. This interaction activates the PI3K-AKT signaling pathway, which contributes to the progression of HIV-ESCC. Our findings depict the spatial microenvironment of HIV-ESCC and elucidate a molecular mechanism in the progression of HIV-ESCC. This will provide us insights into the molecular basis of HIV-ESCC and potential treatment strategies.\",\"PeriodicalId\":19000,\"journal\":{\"name\":\"Molecular Cancer\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12943-025-02248-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02248-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Spatial transcriptomic analysis of tumor microenvironment in esophageal squamous cell carcinoma with HIV infection
Human Immunodeficiency Virus (HIV) is one of the most prevalent viruses, causing significant immune depletion in affected individuals. Current treatments can control HIV and prolong patients’ lives, but new challenges have emerged. Increasing incidence of cancers occur in HIV patients. Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers observed in HIV patients. However, the spatial cellular characteristics of HIV-related ESCC have not been explored, and the differences between HIV-ESCC and typical ESCC remain unclear. We performed spatial transcriptome sequencing on HIV-ESCC samples to depict the microenvironment and employed cell communication analysis and multiplex immunofluorescence to investigate the molecular mechanism in HIV-ESCC. We found that HIV-ESCC exhibited a unique cellular composition, with fibroblasts and epithelial cells intermixed throughout the tumor tissue, lacking obvious spatial separation, while other cell types were sparse. Besides, HIV-ESCC exhibited an immune desert phenotype, characterized by a low degree of immune cell infiltration, with only a few SPP1+ macrophages showing immune resistance functions. Cell communication analysis and multiplex immunofluorescence staining revealed that tumor fibroblasts in HIV-ESCC interact with CD44+ epithelial cells via COL1A2, promoting the expression of PIK3R1 in epithelial cells. This interaction activates the PI3K-AKT signaling pathway, which contributes to the progression of HIV-ESCC. Our findings depict the spatial microenvironment of HIV-ESCC and elucidate a molecular mechanism in the progression of HIV-ESCC. This will provide us insights into the molecular basis of HIV-ESCC and potential treatment strategies.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.