行道树对荷兰鹿特丹当地空气污染物浓度(NO2, BC, UFP, PM2.5)的影响

IF 3.5 Q3 ENVIRONMENTAL SCIENCES
Juliane L. Fry, Pascale Ooms, Maarten Krol, Jules Kerckhoffs, Roel Vermeulen, Joost Wesseling and Sef van den Elshout
{"title":"行道树对荷兰鹿特丹当地空气污染物浓度(NO2, BC, UFP, PM2.5)的影响","authors":"Juliane L. Fry, Pascale Ooms, Maarten Krol, Jules Kerckhoffs, Roel Vermeulen, Joost Wesseling and Sef van den Elshout","doi":"10.1039/D4EA00157E","DOIUrl":null,"url":null,"abstract":"<p >Urban street trees can affect air pollutant concentrations by reducing ventilation rates in polluted street canyons (increasing concentrations), or by providing surface area for deposition (decreasing concentrations). This paper examines these effects in Rotterdam, the Netherlands, using mobile measurements of nitrogen dioxide (NO<small><sub>2</sub></small>), particulate matter (PM), black carbon (BC), and ultrafine particulate matter (UFP). The effect of trees is accounted for in regulatory dispersion models (https://www.cimlk.nl) by the application of an empirically determined tree factor, dependent on the existence and density of the tree canopy, to concentrations due to traffic emissions. Here, we examine the effect of street trees on different pollutants using street-level mobile measurements in a detailed case study (repeated measurements of several neighboring streets) and a larger statistical analysis of measurements across the urban core of Rotterdam. We find that in the summertime, when trees are fully leafed-out, the major short-lived traffic-related pollutants of NO<small><sub>2</sub></small> and BC have higher concentrations in streets with higher traffic and greater tree cover, while PM<small><sub>2.5</sub></small> has slightly lower concentrations in streets with higher tree factor. UFP shows a less clear, but decreasing trend with tree factor. In low-traffic streets and in wintertime (fewer leaves on trees) measurements confirm the importance of leaves to pollutant trapping by trees, by finding no enhancement of NO<small><sub>2</sub></small> and BC with increasing tree cover, rather a slightly decreasing trend in pollutant concentrations with tree factor. Our observations are consistent with the dominant effect of (leafed-out) trees being to trap traffic-emitted pollutants at the surface, but that PM<small><sub>2.5</sub></small> in street canyons is more often added by transport from outside the street, which can be attenuated by tree cover. Overall, these measurements emphasize that both traffic-emitted and regional sources are important factors that determine air quality in Rotterdam streets, making the effect of street trees different for different pollutants and different seasons.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 3","pages":" 394-404"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844741/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of street trees on local air pollutant concentrations (NO2, BC, UFP, PM2.5) in Rotterdam, the Netherlands†\",\"authors\":\"Juliane L. Fry, Pascale Ooms, Maarten Krol, Jules Kerckhoffs, Roel Vermeulen, Joost Wesseling and Sef van den Elshout\",\"doi\":\"10.1039/D4EA00157E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Urban street trees can affect air pollutant concentrations by reducing ventilation rates in polluted street canyons (increasing concentrations), or by providing surface area for deposition (decreasing concentrations). This paper examines these effects in Rotterdam, the Netherlands, using mobile measurements of nitrogen dioxide (NO<small><sub>2</sub></small>), particulate matter (PM), black carbon (BC), and ultrafine particulate matter (UFP). The effect of trees is accounted for in regulatory dispersion models (https://www.cimlk.nl) by the application of an empirically determined tree factor, dependent on the existence and density of the tree canopy, to concentrations due to traffic emissions. Here, we examine the effect of street trees on different pollutants using street-level mobile measurements in a detailed case study (repeated measurements of several neighboring streets) and a larger statistical analysis of measurements across the urban core of Rotterdam. We find that in the summertime, when trees are fully leafed-out, the major short-lived traffic-related pollutants of NO<small><sub>2</sub></small> and BC have higher concentrations in streets with higher traffic and greater tree cover, while PM<small><sub>2.5</sub></small> has slightly lower concentrations in streets with higher tree factor. UFP shows a less clear, but decreasing trend with tree factor. In low-traffic streets and in wintertime (fewer leaves on trees) measurements confirm the importance of leaves to pollutant trapping by trees, by finding no enhancement of NO<small><sub>2</sub></small> and BC with increasing tree cover, rather a slightly decreasing trend in pollutant concentrations with tree factor. Our observations are consistent with the dominant effect of (leafed-out) trees being to trap traffic-emitted pollutants at the surface, but that PM<small><sub>2.5</sub></small> in street canyons is more often added by transport from outside the street, which can be attenuated by tree cover. Overall, these measurements emphasize that both traffic-emitted and regional sources are important factors that determine air quality in Rotterdam streets, making the effect of street trees different for different pollutants and different seasons.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 3\",\"pages\":\" 394-404\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844741/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d4ea00157e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d4ea00157e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

城市行道树可以通过降低受污染的街道峡谷的通风率(增加浓度)或提供沉积表面积(降低浓度)来影响空气污染物浓度。本文研究了荷兰鹿特丹的这些影响,使用移动测量二氧化氮(NO2),颗粒物(PM),黑碳(BC)和超细颗粒物(UFP)。在调节扩散模型(https://www.cimlk.nl)中,树木的影响是通过将经验确定的树木因子(取决于树冠的存在和密度)应用于交通排放造成的浓度来解释的。在这里,我们通过详细的案例研究(对几条相邻街道进行重复测量)和对鹿特丹城市核心的测量进行更大的统计分析,研究了行道树对不同污染物的影响。我们发现,在夏季,当树木完全长出叶子时,交通相关的主要短期污染物NO2和BC在交通量大、树木覆盖率高的街道中浓度较高,而PM2.5在树木因子高的街道中浓度略低。随着树因子的增加,UFP呈下降趋势,但不明显。在低交通流量的街道和冬季(树木上的叶子较少),测量结果证实了树叶对树木捕获污染物的重要性,发现NO2和BC没有随着树木覆盖的增加而增加,而污染物浓度随着树木因子的增加而略有下降。我们的观察结果与(无叶)树木的主要作用是将交通排放的污染物困在地表一致,但街道峡谷中的PM2.5更多的是由街道外的运输增加的,这可以通过树木覆盖来减弱。总的来说,这些测量强调交通排放和区域源都是决定鹿特丹街道空气质量的重要因素,使得行道树对不同污染物和不同季节的影响不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of street trees on local air pollutant concentrations (NO2, BC, UFP, PM2.5) in Rotterdam, the Netherlands†

Effect of street trees on local air pollutant concentrations (NO2, BC, UFP, PM2.5) in Rotterdam, the Netherlands†

Urban street trees can affect air pollutant concentrations by reducing ventilation rates in polluted street canyons (increasing concentrations), or by providing surface area for deposition (decreasing concentrations). This paper examines these effects in Rotterdam, the Netherlands, using mobile measurements of nitrogen dioxide (NO2), particulate matter (PM), black carbon (BC), and ultrafine particulate matter (UFP). The effect of trees is accounted for in regulatory dispersion models (https://www.cimlk.nl) by the application of an empirically determined tree factor, dependent on the existence and density of the tree canopy, to concentrations due to traffic emissions. Here, we examine the effect of street trees on different pollutants using street-level mobile measurements in a detailed case study (repeated measurements of several neighboring streets) and a larger statistical analysis of measurements across the urban core of Rotterdam. We find that in the summertime, when trees are fully leafed-out, the major short-lived traffic-related pollutants of NO2 and BC have higher concentrations in streets with higher traffic and greater tree cover, while PM2.5 has slightly lower concentrations in streets with higher tree factor. UFP shows a less clear, but decreasing trend with tree factor. In low-traffic streets and in wintertime (fewer leaves on trees) measurements confirm the importance of leaves to pollutant trapping by trees, by finding no enhancement of NO2 and BC with increasing tree cover, rather a slightly decreasing trend in pollutant concentrations with tree factor. Our observations are consistent with the dominant effect of (leafed-out) trees being to trap traffic-emitted pollutants at the surface, but that PM2.5 in street canyons is more often added by transport from outside the street, which can be attenuated by tree cover. Overall, these measurements emphasize that both traffic-emitted and regional sources are important factors that determine air quality in Rotterdam streets, making the effect of street trees different for different pollutants and different seasons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信