基于高斯过程回归的视网膜植入物感知阈值空间估计。

ArXiv Pub Date : 2025-04-29
Roksana Sadeghi, Michael Beyeler
{"title":"基于高斯过程回归的视网膜植入物感知阈值空间估计。","authors":"Roksana Sadeghi, Michael Beyeler","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal prostheses restore vision by electrically stimulating surviving neurons, but calibrating perceptual thresholds (i.e., the minimum stimulus intensity required for perception) remains a time-intensive challenge, especially for high-electrode-count devices. Since neighboring electrodes exhibit spatial correlations, we propose a Gaussian Process Regression (GPR) framework to predict thresholds at unsampled locations while leveraging uncertainty estimates to guide adaptive sampling. Using perceptual threshold data from four Argus II users, we show that GPR with a Matern kerneĺ provides more accurate threshold predictions than a Radial Basis Function (RBF) kernel (<i>p</i> < .001, Wilcoxon signed-rank test). In addition, spatially optimized sampling yielded lower prediction error than uniform random sampling for Participants 1 and 3 (<i>p</i> < .05). While adaptive sampling dynamically selects electrodes based on model uncertainty, its accuracy gains over spatial sampling were not statistically significant (<i>p</i> > .05), though it approached significance for Participant 1 (<i>p</i> = .074). These findings establish GPR with spatial sampling as a scalable, efficient approach to retinal prosthesis calibration, minimizing patient burden while maintaining predictive accuracy. More broadly, this framework offers a generalizable solution for adaptive calibration in neuroprosthetic devices with spatially structured stimulation thresholds, paving the way for faster, more personalized system fitting in future high-channel-count implants.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844632/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient Spatial Estimation of Perceptual Thresholds for Retinal Implants via Gaussian Process Regression.\",\"authors\":\"Roksana Sadeghi, Michael Beyeler\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinal prostheses restore vision by electrically stimulating surviving neurons, but calibrating perceptual thresholds (i.e., the minimum stimulus intensity required for perception) remains a time-intensive challenge, especially for high-electrode-count devices. Since neighboring electrodes exhibit spatial correlations, we propose a Gaussian Process Regression (GPR) framework to predict thresholds at unsampled locations while leveraging uncertainty estimates to guide adaptive sampling. Using perceptual threshold data from four Argus II users, we show that GPR with a Matern kerneĺ provides more accurate threshold predictions than a Radial Basis Function (RBF) kernel (<i>p</i> < .001, Wilcoxon signed-rank test). In addition, spatially optimized sampling yielded lower prediction error than uniform random sampling for Participants 1 and 3 (<i>p</i> < .05). While adaptive sampling dynamically selects electrodes based on model uncertainty, its accuracy gains over spatial sampling were not statistically significant (<i>p</i> > .05), though it approached significance for Participant 1 (<i>p</i> = .074). These findings establish GPR with spatial sampling as a scalable, efficient approach to retinal prosthesis calibration, minimizing patient burden while maintaining predictive accuracy. More broadly, this framework offers a generalizable solution for adaptive calibration in neuroprosthetic devices with spatially structured stimulation thresholds, paving the way for faster, more personalized system fitting in future high-channel-count implants.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视网膜假体通过电刺激存活的神经元来恢复视力,但是校准感知阈值——感知所需的最小刺激强度——仍然是一个耗时的挑战,特别是对于高电极计数的设备。由于相邻电极表现出空间相关性,我们提出了一个高斯过程回归(GPR)框架来预测未采样位置的阈值,同时利用不确定性估计来指导自适应采样。使用来自四个Argus II用户的感知阈值数据,我们表明具有Mat\'ern内核的GPR比径向基函数(RBF)内核提供更准确的阈值预测(p < .001, Wilcoxon符号秩检验)。此外,空间优化抽样对参与者1和参与者3的预测误差低于均匀随机抽样(p < 0.05)。虽然自适应采样基于模型不确定性动态选择电极,但其精度增益相对于空间采样没有统计学意义(p >.05),尽管它对参与者1接近显著性(p = 0.074)。这些研究结果表明,空间采样的GPR是一种可扩展的、有效的视网膜假体校准方法,在保持预测准确性的同时,最大限度地减少了患者的负担。更广泛地说,该框架为具有空间结构刺激阈值的神经假肢装置的自适应校准提供了一种可推广的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Spatial Estimation of Perceptual Thresholds for Retinal Implants via Gaussian Process Regression.

Retinal prostheses restore vision by electrically stimulating surviving neurons, but calibrating perceptual thresholds (i.e., the minimum stimulus intensity required for perception) remains a time-intensive challenge, especially for high-electrode-count devices. Since neighboring electrodes exhibit spatial correlations, we propose a Gaussian Process Regression (GPR) framework to predict thresholds at unsampled locations while leveraging uncertainty estimates to guide adaptive sampling. Using perceptual threshold data from four Argus II users, we show that GPR with a Matern kerneĺ provides more accurate threshold predictions than a Radial Basis Function (RBF) kernel (p < .001, Wilcoxon signed-rank test). In addition, spatially optimized sampling yielded lower prediction error than uniform random sampling for Participants 1 and 3 (p < .05). While adaptive sampling dynamically selects electrodes based on model uncertainty, its accuracy gains over spatial sampling were not statistically significant (p > .05), though it approached significance for Participant 1 (p = .074). These findings establish GPR with spatial sampling as a scalable, efficient approach to retinal prosthesis calibration, minimizing patient burden while maintaining predictive accuracy. More broadly, this framework offers a generalizable solution for adaptive calibration in neuroprosthetic devices with spatially structured stimulation thresholds, paving the way for faster, more personalized system fitting in future high-channel-count implants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信