Yan Xia, An Xiong, Zilong Zhang, Quan Zou, Feifei Cui
{"title":"基于深度学习的药物-药物相互作用预测方法综述。","authors":"Yan Xia, An Xiong, Zilong Zhang, Quan Zou, Feifei Cui","doi":"10.1093/bfgp/elae052","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning models have made significant progress in the biomedical field, particularly in the prediction of drug-drug interactions (DDIs). DDIs are pharmacodynamic reactions between two or more drugs in the body, which may lead to adverse effects and are of great significance for drug development and clinical research. However, predicting DDI through traditional clinical trials and experiments is not only costly but also time-consuming. When utilizing advanced Artificial Intelligence (AI) and deep learning techniques, both developers and users face multiple challenges, including the problem of acquiring and encoding data, as well as the difficulty of designing computational methods. In this paper, we review a variety of DDI prediction methods, including similarity-based, network-based, and integration-based approaches, to provide an up-to-date and easy-to-understand guide for researchers in different fields. Additionally, we provide an in-depth analysis of widely used molecular representations and a systematic exposition of the theoretical framework of models used to extract features from graph data.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":"24 ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847217/pdf/","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of deep learning-based approaches for drug-drug interaction prediction.\",\"authors\":\"Yan Xia, An Xiong, Zilong Zhang, Quan Zou, Feifei Cui\",\"doi\":\"10.1093/bfgp/elae052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning models have made significant progress in the biomedical field, particularly in the prediction of drug-drug interactions (DDIs). DDIs are pharmacodynamic reactions between two or more drugs in the body, which may lead to adverse effects and are of great significance for drug development and clinical research. However, predicting DDI through traditional clinical trials and experiments is not only costly but also time-consuming. When utilizing advanced Artificial Intelligence (AI) and deep learning techniques, both developers and users face multiple challenges, including the problem of acquiring and encoding data, as well as the difficulty of designing computational methods. In this paper, we review a variety of DDI prediction methods, including similarity-based, network-based, and integration-based approaches, to provide an up-to-date and easy-to-understand guide for researchers in different fields. Additionally, we provide an in-depth analysis of widely used molecular representations and a systematic exposition of the theoretical framework of models used to extract features from graph data.</p>\",\"PeriodicalId\":55323,\"journal\":{\"name\":\"Briefings in Functional Genomics\",\"volume\":\"24 \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847217/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in Functional Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elae052\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae052","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A comprehensive review of deep learning-based approaches for drug-drug interaction prediction.
Deep learning models have made significant progress in the biomedical field, particularly in the prediction of drug-drug interactions (DDIs). DDIs are pharmacodynamic reactions between two or more drugs in the body, which may lead to adverse effects and are of great significance for drug development and clinical research. However, predicting DDI through traditional clinical trials and experiments is not only costly but also time-consuming. When utilizing advanced Artificial Intelligence (AI) and deep learning techniques, both developers and users face multiple challenges, including the problem of acquiring and encoding data, as well as the difficulty of designing computational methods. In this paper, we review a variety of DDI prediction methods, including similarity-based, network-based, and integration-based approaches, to provide an up-to-date and easy-to-understand guide for researchers in different fields. Additionally, we provide an in-depth analysis of widely used molecular representations and a systematic exposition of the theoretical framework of models used to extract features from graph data.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.