湍流可压缩流压力解算器的分离降阶模型。

IF 2 Q3 MECHANICS
Matteo Zancanaro, Valentin Nkana Ngan, Giovanni Stabile, Gianluigi Rozza
{"title":"湍流可压缩流压力解算器的分离降阶模型。","authors":"Matteo Zancanaro, Valentin Nkana Ngan, Giovanni Stabile, Gianluigi Rozza","doi":"10.1186/s40323-025-00284-8","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides a reduced-order modelling framework for turbulent compressible flows discretized by the use of finite volume approaches. The basic idea behind this work is the construction of a reduced-order model capable of providing closely accurate solutions with respect to the high fidelity flow fields. Full-order solutions are often obtained through the use of segregated solvers (<i>solution variables are solved one after another</i>), employing slightly modified conservation laws so that they can be decoupled and then solved one at a time. Classical reduction architectures, on the contrary, rely on the Galerkin projection of a complete Navier-Stokes system to be projected all at once, causing a mild discrepancy with the high order solutions. This article relies on segregated reduced-order algorithms for the resolution of turbulent and compressible flows in the context of physical and geometrical parameters. At the full-order level turbulence is modeled using an eddy viscosity approach. Since there is a variety of different turbulence models for the approximation of this supplementary viscosity, one of the aims of this work is to provide a reduced-order model which is independent on this selection. This goal is reached by the application of hybrid methods where Navier-Stokes equations are projected in a standard way while the viscosity field is approximated by the use of data-driven interpolation methods or by the evaluation of a properly trained neural network. By exploiting the aforementioned expedients it is possible to predict accurate solutions with respect to the full-order problems characterized by high Reynolds numbers and elevated Mach numbers.</p>","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"12 1","pages":"3"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839796/pdf/","citationCount":"0","resultStr":"{\"title\":\"A segregated reduced-order model of a pressure-based solver for turbulent compressible flows.\",\"authors\":\"Matteo Zancanaro, Valentin Nkana Ngan, Giovanni Stabile, Gianluigi Rozza\",\"doi\":\"10.1186/s40323-025-00284-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article provides a reduced-order modelling framework for turbulent compressible flows discretized by the use of finite volume approaches. The basic idea behind this work is the construction of a reduced-order model capable of providing closely accurate solutions with respect to the high fidelity flow fields. Full-order solutions are often obtained through the use of segregated solvers (<i>solution variables are solved one after another</i>), employing slightly modified conservation laws so that they can be decoupled and then solved one at a time. Classical reduction architectures, on the contrary, rely on the Galerkin projection of a complete Navier-Stokes system to be projected all at once, causing a mild discrepancy with the high order solutions. This article relies on segregated reduced-order algorithms for the resolution of turbulent and compressible flows in the context of physical and geometrical parameters. At the full-order level turbulence is modeled using an eddy viscosity approach. Since there is a variety of different turbulence models for the approximation of this supplementary viscosity, one of the aims of this work is to provide a reduced-order model which is independent on this selection. This goal is reached by the application of hybrid methods where Navier-Stokes equations are projected in a standard way while the viscosity field is approximated by the use of data-driven interpolation methods or by the evaluation of a properly trained neural network. By exploiting the aforementioned expedients it is possible to predict accurate solutions with respect to the full-order problems characterized by high Reynolds numbers and elevated Mach numbers.</p>\",\"PeriodicalId\":37424,\"journal\":{\"name\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"volume\":\"12 1\",\"pages\":\"3\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40323-025-00284-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-025-00284-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了一个用有限体积方法离散的湍流可压缩流动的降阶建模框架。这项工作背后的基本思想是构建一个能够提供高保真度流场的精确解的降阶模型。全阶解通常通过使用分离求解器获得(解变量一个接一个地求解),使用稍微修改的守恒定律,以便它们可以解耦,然后一次求解一个。相反,经典的约简架构依赖于一个完整的Navier-Stokes系统的伽辽金投影来一次全部投影,导致与高阶解的轻微差异。本文依靠分离的降阶算法来解决物理和几何参数背景下的湍流和可压缩流动。在全阶水平上,紊流是用涡流粘度法来模拟的。由于有各种不同的湍流模型来近似这种补充粘度,本工作的目的之一是提供一个独立于这种选择的降阶模型。这一目标是通过应用混合方法来实现的,在混合方法中,Navier-Stokes方程以标准方式进行投影,而粘度场则通过使用数据驱动的插值方法或通过适当训练的神经网络的评估来近似。利用上述权宜之计,就有可能预测高雷诺数和高马赫数全阶问题的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A segregated reduced-order model of a pressure-based solver for turbulent compressible flows.

This article provides a reduced-order modelling framework for turbulent compressible flows discretized by the use of finite volume approaches. The basic idea behind this work is the construction of a reduced-order model capable of providing closely accurate solutions with respect to the high fidelity flow fields. Full-order solutions are often obtained through the use of segregated solvers (solution variables are solved one after another), employing slightly modified conservation laws so that they can be decoupled and then solved one at a time. Classical reduction architectures, on the contrary, rely on the Galerkin projection of a complete Navier-Stokes system to be projected all at once, causing a mild discrepancy with the high order solutions. This article relies on segregated reduced-order algorithms for the resolution of turbulent and compressible flows in the context of physical and geometrical parameters. At the full-order level turbulence is modeled using an eddy viscosity approach. Since there is a variety of different turbulence models for the approximation of this supplementary viscosity, one of the aims of this work is to provide a reduced-order model which is independent on this selection. This goal is reached by the application of hybrid methods where Navier-Stokes equations are projected in a standard way while the viscosity field is approximated by the use of data-driven interpolation methods or by the evaluation of a properly trained neural network. By exploiting the aforementioned expedients it is possible to predict accurate solutions with respect to the full-order problems characterized by high Reynolds numbers and elevated Mach numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Modeling and Simulation in Engineering Sciences
Advanced Modeling and Simulation in Engineering Sciences Engineering-Engineering (miscellaneous)
CiteScore
6.80
自引率
0.00%
发文量
22
审稿时长
30 weeks
期刊介绍: The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信