CircDIAPH1通过启动CEACAM6表达促进肝转移和结直肠癌的发展。

IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wei Wang, Xu Li, Hantao Wang, Cheng Huang, Laicheng Zhu, Hao Wang, Wei Zhang
{"title":"CircDIAPH1通过启动CEACAM6表达促进肝转移和结直肠癌的发展。","authors":"Wei Wang, Xu Li, Hantao Wang, Cheng Huang, Laicheng Zhu, Hao Wang, Wei Zhang","doi":"10.1002/mc.23896","DOIUrl":null,"url":null,"abstract":"<p><p>Liver metastasis is a critical factor influencing the 5-year survival rate in colorectal cancer (CRC). However, the biological function of most circRNAs in liver metastasis of CRC is still unknown. In this study, we identified differentially expressed circRNAs associated with liver metastasis (LM-DE-circRNAs). A total of 247 LM-DE-circRNAs were identified, and crucial signaling pathways, including the regulation of actin cytoskeleton, were significantly enriched, featuring six LM-DE-circRNAs. Notably, circDIAPH1 (hsa_circ_0074323), with the highest AUC value, emerged as a potential biomarker for CRC liver metastasis (CRLM). Functional assays following circDIAPH1 knockdown demonstrated induced apoptosis, suppressed proliferation, reduced metastasis, and invasion in CRC cell lines in vitro. The circDIAPH1 knockdown attenuated tumor growth in a cell-derived xenograft model. Furthermore, circDIAPH1 knockdown lessened the liver metastasis. Transcriptome profiling revealed that CEACAM6 was the most downregulated gene while circDIAPH1 was knocked down, and possesses high expression value in CRC. Most importantly, we found that circDIAPH1 recruited transcription factor FOXA1 to bind in the promoter region of CEACAM6 and initiated CEACAM6 expression. Additionally, the study identified the transcription factor BRD4 as a regulator of circDIAPH1 expression in CRC. In conclusion, this study reveals that circDIAPH1 recruits FOXA1 to initiate CEACAM6 expression, promoting liver metastasis and development of CRC.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CircDIAPH1 Promotes Liver Metastasis and Development of Colorectal Cancer by Initiation of CEACAM6 Expression.\",\"authors\":\"Wei Wang, Xu Li, Hantao Wang, Cheng Huang, Laicheng Zhu, Hao Wang, Wei Zhang\",\"doi\":\"10.1002/mc.23896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liver metastasis is a critical factor influencing the 5-year survival rate in colorectal cancer (CRC). However, the biological function of most circRNAs in liver metastasis of CRC is still unknown. In this study, we identified differentially expressed circRNAs associated with liver metastasis (LM-DE-circRNAs). A total of 247 LM-DE-circRNAs were identified, and crucial signaling pathways, including the regulation of actin cytoskeleton, were significantly enriched, featuring six LM-DE-circRNAs. Notably, circDIAPH1 (hsa_circ_0074323), with the highest AUC value, emerged as a potential biomarker for CRC liver metastasis (CRLM). Functional assays following circDIAPH1 knockdown demonstrated induced apoptosis, suppressed proliferation, reduced metastasis, and invasion in CRC cell lines in vitro. The circDIAPH1 knockdown attenuated tumor growth in a cell-derived xenograft model. Furthermore, circDIAPH1 knockdown lessened the liver metastasis. Transcriptome profiling revealed that CEACAM6 was the most downregulated gene while circDIAPH1 was knocked down, and possesses high expression value in CRC. Most importantly, we found that circDIAPH1 recruited transcription factor FOXA1 to bind in the promoter region of CEACAM6 and initiated CEACAM6 expression. Additionally, the study identified the transcription factor BRD4 as a regulator of circDIAPH1 expression in CRC. In conclusion, this study reveals that circDIAPH1 recruits FOXA1 to initiate CEACAM6 expression, promoting liver metastasis and development of CRC.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.23896\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23896","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝转移是影响结直肠癌5年生存率的重要因素。然而,大多数环状rna在结直肠癌肝转移中的生物学功能尚不清楚。在这项研究中,我们鉴定了与肝转移相关的差异表达环状rna (LM-DE-circRNAs)。共鉴定出247个lm - de - circrna,其中包括肌动蛋白细胞骨架调控在内的关键信号通路显著富集,其中包括6个lm - de - circrna。值得注意的是,具有最高AUC值的circDIAPH1 (hsa_circ_0074323)成为CRC肝转移(CRLM)的潜在生物标志物。circDIAPH1敲除后的功能分析显示,在CRC细胞系中诱导细胞凋亡,抑制增殖,减少转移和侵袭。在细胞来源的异种移植物模型中,环状膜片的敲除可减轻肿瘤的生长。此外,circDIAPH1敲低可减少肝转移。转录组分析显示CEACAM6是CRC中下调最多的基因,而circDIAPH1则被下调,在CRC中具有较高的表达价值。最重要的是,我们发现circDIAPH1招募转录因子FOXA1结合在CEACAM6的启动子区域,并启动CEACAM6的表达。此外,该研究还发现转录因子BRD4是CRC中circDIAPH1表达的调节因子。综上所述,本研究揭示circDIAPH1募集FOXA1启动CEACAM6表达,促进结直肠癌的肝转移和发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CircDIAPH1 Promotes Liver Metastasis and Development of Colorectal Cancer by Initiation of CEACAM6 Expression.

Liver metastasis is a critical factor influencing the 5-year survival rate in colorectal cancer (CRC). However, the biological function of most circRNAs in liver metastasis of CRC is still unknown. In this study, we identified differentially expressed circRNAs associated with liver metastasis (LM-DE-circRNAs). A total of 247 LM-DE-circRNAs were identified, and crucial signaling pathways, including the regulation of actin cytoskeleton, were significantly enriched, featuring six LM-DE-circRNAs. Notably, circDIAPH1 (hsa_circ_0074323), with the highest AUC value, emerged as a potential biomarker for CRC liver metastasis (CRLM). Functional assays following circDIAPH1 knockdown demonstrated induced apoptosis, suppressed proliferation, reduced metastasis, and invasion in CRC cell lines in vitro. The circDIAPH1 knockdown attenuated tumor growth in a cell-derived xenograft model. Furthermore, circDIAPH1 knockdown lessened the liver metastasis. Transcriptome profiling revealed that CEACAM6 was the most downregulated gene while circDIAPH1 was knocked down, and possesses high expression value in CRC. Most importantly, we found that circDIAPH1 recruited transcription factor FOXA1 to bind in the promoter region of CEACAM6 and initiated CEACAM6 expression. Additionally, the study identified the transcription factor BRD4 as a regulator of circDIAPH1 expression in CRC. In conclusion, this study reveals that circDIAPH1 recruits FOXA1 to initiate CEACAM6 expression, promoting liver metastasis and development of CRC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信