{"title":"ARMC10通过激活Notch通路驱动胶质母细胞瘤进展","authors":"Bin Feng, Taihong Gao, Lin Chen, Yi Xing","doi":"10.1002/mc.23895","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to check the biological functions and uncover the mechanism of armadillo repeat protein C10 (ARMC10) in glioblastoma (GBM). The expression and potential mechanisms of ARMC10 in GBM were analyzed by bioinformatics analysis. In GBM cells, function-loss experiments were used to evaluate the influences of ARMC10 on cell proliferation, cell invasion, lipid levels, and cell migration by colony formation assay, 5-ethynyl-2'-deoxyuridine staining, cell counting kit-8 assay, transwell assay, BODIPY staining, and wound healing assay. Mouse xenograft models were constructed to validate the influences of ARMC10 in vivo. ARMC10 levels in GBM were upregulated, and patients with low ARMC10 levels displayed a better prognosis. ARMC10 knockdown resulted in a decrease of GBM cell invasion, migration, and proliferation. GSEA showed that ARMC10 was positively associated with the Notch pathway and fatty acid metabolism. ARMC10 knockdown reduced the levels of triglyceride, cholesterol, and lipid, and inhibited the expression of proteins related to fatty acid metabolism and Notch pathway. Moreover, notch receptor 1 (Notch1) overexpression reversed the inhibition of cell proliferation, fatty acid metabolism, and invasion induced by ARMC10 knockdown. In vivo, ARMC10 knockdown suppressed tumor growth. RMC10 knockdown suppressed GBM malignant progression, which had a bearing on Notch pathway.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARMC10 Drives Glioblastoma Progression Through Activating Notch Pathway.\",\"authors\":\"Bin Feng, Taihong Gao, Lin Chen, Yi Xing\",\"doi\":\"10.1002/mc.23895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to check the biological functions and uncover the mechanism of armadillo repeat protein C10 (ARMC10) in glioblastoma (GBM). The expression and potential mechanisms of ARMC10 in GBM were analyzed by bioinformatics analysis. In GBM cells, function-loss experiments were used to evaluate the influences of ARMC10 on cell proliferation, cell invasion, lipid levels, and cell migration by colony formation assay, 5-ethynyl-2'-deoxyuridine staining, cell counting kit-8 assay, transwell assay, BODIPY staining, and wound healing assay. Mouse xenograft models were constructed to validate the influences of ARMC10 in vivo. ARMC10 levels in GBM were upregulated, and patients with low ARMC10 levels displayed a better prognosis. ARMC10 knockdown resulted in a decrease of GBM cell invasion, migration, and proliferation. GSEA showed that ARMC10 was positively associated with the Notch pathway and fatty acid metabolism. ARMC10 knockdown reduced the levels of triglyceride, cholesterol, and lipid, and inhibited the expression of proteins related to fatty acid metabolism and Notch pathway. Moreover, notch receptor 1 (Notch1) overexpression reversed the inhibition of cell proliferation, fatty acid metabolism, and invasion induced by ARMC10 knockdown. In vivo, ARMC10 knockdown suppressed tumor growth. RMC10 knockdown suppressed GBM malignant progression, which had a bearing on Notch pathway.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.23895\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23895","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在检测犰狳重复蛋白C10 (armadillo repeat protein C10, ARMC10)在胶质母细胞瘤(glioblastoma, GBM)中的生物学功能并揭示其机制。采用生物信息学方法分析ARMC10在GBM中的表达及其潜在机制。在GBM细胞中,采用功能丧失实验,通过集落形成实验、5-乙基-2'-脱氧尿苷染色、细胞计数试剂盒-8实验、transwell实验、BODIPY染色和伤口愈合实验,评估ARMC10对细胞增殖、细胞侵袭、脂质水平和细胞迁移的影响。构建小鼠异种移植物模型,验证ARMC10在体内的影响。GBM中ARMC10水平上调,ARMC10水平低的患者预后较好。ARMC10敲低导致GBM细胞侵袭、迁移和增殖减少。GSEA显示ARMC10与Notch通路和脂肪酸代谢呈正相关。ARMC10敲低可降低甘油三酯、胆固醇和脂质水平,抑制脂肪酸代谢和Notch通路相关蛋白的表达。此外,notch受体1 (Notch1)过表达逆转了ARMC10敲低诱导的细胞增殖、脂肪酸代谢和侵袭的抑制。在体内,ARMC10敲低抑制肿瘤生长。RMC10敲低抑制GBM恶性进展,与Notch通路有关。
ARMC10 Drives Glioblastoma Progression Through Activating Notch Pathway.
This study aimed to check the biological functions and uncover the mechanism of armadillo repeat protein C10 (ARMC10) in glioblastoma (GBM). The expression and potential mechanisms of ARMC10 in GBM were analyzed by bioinformatics analysis. In GBM cells, function-loss experiments were used to evaluate the influences of ARMC10 on cell proliferation, cell invasion, lipid levels, and cell migration by colony formation assay, 5-ethynyl-2'-deoxyuridine staining, cell counting kit-8 assay, transwell assay, BODIPY staining, and wound healing assay. Mouse xenograft models were constructed to validate the influences of ARMC10 in vivo. ARMC10 levels in GBM were upregulated, and patients with low ARMC10 levels displayed a better prognosis. ARMC10 knockdown resulted in a decrease of GBM cell invasion, migration, and proliferation. GSEA showed that ARMC10 was positively associated with the Notch pathway and fatty acid metabolism. ARMC10 knockdown reduced the levels of triglyceride, cholesterol, and lipid, and inhibited the expression of proteins related to fatty acid metabolism and Notch pathway. Moreover, notch receptor 1 (Notch1) overexpression reversed the inhibition of cell proliferation, fatty acid metabolism, and invasion induced by ARMC10 knockdown. In vivo, ARMC10 knockdown suppressed tumor growth. RMC10 knockdown suppressed GBM malignant progression, which had a bearing on Notch pathway.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.