{"title":"基于Akt和Wnt信号通路的小鼠阿尔茨海默病生物标志物的鉴定和验证","authors":"Ya-Han Wang, Hong-Yun Wu, Chao Xin, Kai-Xin Zhang, Ji-Wei Zhang, Hong-Wei Zhi","doi":"10.1007/s12035-025-04785-w","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative disease that remains challenging to treat. Akt and Wnt play a role in complex cellular signaling, which is crucial for examining the onset of AD. In this study, we aimed to identify and analyze Akt pathway-related genes (ARGs) and Wnt pathway-related genes (WRGs) as AD biomarkers, determine the effects of ARGs and WRGs on AD, and verify these effects in AD mouse models. We searched for differentially expressed genes in the Gene Expression Omnibus database, constructed candidate gene protein-protein interaction networks, and used least absolute shrinkage and selection operator regression analysis and the support vector machine-recursive feature elimination algorithm to screen key genes. Correlation and functional similarity analyses of key genes, immune infiltration analysis, competing endogenous RNA network construction, and drug prediction of key genes were performed. Expression of key genes in streptozotocin-treated (STZ)-treated AD mice was validated using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Bioinformatics analysis identified five key genes in AD: PRKACA, CDH3, ATP6V0C, DLL1, and CELSR2. Step-down tests, immunohistochemistry, and silver plate staining confirmed successful treatment of STZ-induced AD in mice. According to RT-qPCR analysis, the relative expression of DLL1 mRNA in AD mice was higher than that in control mice, whereas the relative expression of ATP6V0C and PRKACA mRNA in AD mice was lower than that in control mice; this was consistent with the results of bioinformatics analysis (p < 0.05). This study screened and validated AD biomarkers associated with the Akt and Wnt pathways in mouse models.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"8279-8297"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208985/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and Validation of Biomarkers for Alzheimer's Disease Based on Akt and Wnt Signaling Pathways in Mouse Models.\",\"authors\":\"Ya-Han Wang, Hong-Yun Wu, Chao Xin, Kai-Xin Zhang, Ji-Wei Zhang, Hong-Wei Zhi\",\"doi\":\"10.1007/s12035-025-04785-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a neurodegenerative disease that remains challenging to treat. Akt and Wnt play a role in complex cellular signaling, which is crucial for examining the onset of AD. In this study, we aimed to identify and analyze Akt pathway-related genes (ARGs) and Wnt pathway-related genes (WRGs) as AD biomarkers, determine the effects of ARGs and WRGs on AD, and verify these effects in AD mouse models. We searched for differentially expressed genes in the Gene Expression Omnibus database, constructed candidate gene protein-protein interaction networks, and used least absolute shrinkage and selection operator regression analysis and the support vector machine-recursive feature elimination algorithm to screen key genes. Correlation and functional similarity analyses of key genes, immune infiltration analysis, competing endogenous RNA network construction, and drug prediction of key genes were performed. Expression of key genes in streptozotocin-treated (STZ)-treated AD mice was validated using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Bioinformatics analysis identified five key genes in AD: PRKACA, CDH3, ATP6V0C, DLL1, and CELSR2. Step-down tests, immunohistochemistry, and silver plate staining confirmed successful treatment of STZ-induced AD in mice. According to RT-qPCR analysis, the relative expression of DLL1 mRNA in AD mice was higher than that in control mice, whereas the relative expression of ATP6V0C and PRKACA mRNA in AD mice was lower than that in control mice; this was consistent with the results of bioinformatics analysis (p < 0.05). This study screened and validated AD biomarkers associated with the Akt and Wnt pathways in mouse models.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"8279-8297\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208985/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04785-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04785-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Identification and Validation of Biomarkers for Alzheimer's Disease Based on Akt and Wnt Signaling Pathways in Mouse Models.
Alzheimer's disease (AD) is a neurodegenerative disease that remains challenging to treat. Akt and Wnt play a role in complex cellular signaling, which is crucial for examining the onset of AD. In this study, we aimed to identify and analyze Akt pathway-related genes (ARGs) and Wnt pathway-related genes (WRGs) as AD biomarkers, determine the effects of ARGs and WRGs on AD, and verify these effects in AD mouse models. We searched for differentially expressed genes in the Gene Expression Omnibus database, constructed candidate gene protein-protein interaction networks, and used least absolute shrinkage and selection operator regression analysis and the support vector machine-recursive feature elimination algorithm to screen key genes. Correlation and functional similarity analyses of key genes, immune infiltration analysis, competing endogenous RNA network construction, and drug prediction of key genes were performed. Expression of key genes in streptozotocin-treated (STZ)-treated AD mice was validated using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Bioinformatics analysis identified five key genes in AD: PRKACA, CDH3, ATP6V0C, DLL1, and CELSR2. Step-down tests, immunohistochemistry, and silver plate staining confirmed successful treatment of STZ-induced AD in mice. According to RT-qPCR analysis, the relative expression of DLL1 mRNA in AD mice was higher than that in control mice, whereas the relative expression of ATP6V0C and PRKACA mRNA in AD mice was lower than that in control mice; this was consistent with the results of bioinformatics analysis (p < 0.05). This study screened and validated AD biomarkers associated with the Akt and Wnt pathways in mouse models.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.