Lorenza Destro, Valentina Crippa, Daniela Gabbia, Marco Roverso, Sara Bogialli, Paolo Zardi, Giovanni Marzaro, Luca Mologni and Alfonso Zambon
{"title":"发现选择性的、代谢稳定的吡唑类FLT3抑制剂用于治疗急性髓性白血病。","authors":"Lorenza Destro, Valentina Crippa, Daniela Gabbia, Marco Roverso, Sara Bogialli, Paolo Zardi, Giovanni Marzaro, Luca Mologni and Alfonso Zambon","doi":"10.1039/D4MD00956H","DOIUrl":null,"url":null,"abstract":"<p >Acute myeloid leukemia (AML) is the most prevalent form of acute leukemia in adults, representing a substantial medical need, as the standard of care has not changed for the past two decades, and the long-term outcome remains dismal for a large fraction of patients. Approximately 30% of AMLs carry activating mutations of the FLT3 kinase. Unfortunately, single-agent FLT3 inhibitor therapy has met limited clinical efficacy, underscoring a strong rationale for the development of more selective and more potent inhibitors. Here we present the design, synthesis and biological evaluation of a series of biphenyl substituted pyrazoyl-ureas, an underexplored scaffold in medicinal chemistry, as novel FLT3 inhibitors with a putative type II binding mode. Optimized compounds show nanomolar activity against isolated FLT3 (230 nM for compound <strong>10q</strong>) and on FLT3-driven cell lines (280 nM and 18 nM for compound <strong>10q</strong> against MV4.11 and MOLM-14 cells respectively), with no toxicity against control cell lines, limited metabolism in human microsomes and a reliable SAR; furthermore, profiling of compound <strong>10q</strong> against a panel of kinases highlights c-Kit as the only other hit. Overall, we show that the series has a narrow selectivity profile and metabolic stability, and the mode of action of the inhibitors through FLT3 is confirmed by strong suppression of FLT3 and STAT5 phosphorylation.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" 4","pages":" 1766-1780"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of selective, metabolically stable pyrazole-based FLT3 inhibitors for the treatment of acute myeloid leukemia†\",\"authors\":\"Lorenza Destro, Valentina Crippa, Daniela Gabbia, Marco Roverso, Sara Bogialli, Paolo Zardi, Giovanni Marzaro, Luca Mologni and Alfonso Zambon\",\"doi\":\"10.1039/D4MD00956H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Acute myeloid leukemia (AML) is the most prevalent form of acute leukemia in adults, representing a substantial medical need, as the standard of care has not changed for the past two decades, and the long-term outcome remains dismal for a large fraction of patients. Approximately 30% of AMLs carry activating mutations of the FLT3 kinase. Unfortunately, single-agent FLT3 inhibitor therapy has met limited clinical efficacy, underscoring a strong rationale for the development of more selective and more potent inhibitors. Here we present the design, synthesis and biological evaluation of a series of biphenyl substituted pyrazoyl-ureas, an underexplored scaffold in medicinal chemistry, as novel FLT3 inhibitors with a putative type II binding mode. Optimized compounds show nanomolar activity against isolated FLT3 (230 nM for compound <strong>10q</strong>) and on FLT3-driven cell lines (280 nM and 18 nM for compound <strong>10q</strong> against MV4.11 and MOLM-14 cells respectively), with no toxicity against control cell lines, limited metabolism in human microsomes and a reliable SAR; furthermore, profiling of compound <strong>10q</strong> against a panel of kinases highlights c-Kit as the only other hit. Overall, we show that the series has a narrow selectivity profile and metabolic stability, and the mode of action of the inhibitors through FLT3 is confirmed by strong suppression of FLT3 and STAT5 phosphorylation.</p>\",\"PeriodicalId\":21462,\"journal\":{\"name\":\"RSC medicinal chemistry\",\"volume\":\" 4\",\"pages\":\" 1766-1780\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/md/d4md00956h\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/md/d4md00956h","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Discovery of selective, metabolically stable pyrazole-based FLT3 inhibitors for the treatment of acute myeloid leukemia†
Acute myeloid leukemia (AML) is the most prevalent form of acute leukemia in adults, representing a substantial medical need, as the standard of care has not changed for the past two decades, and the long-term outcome remains dismal for a large fraction of patients. Approximately 30% of AMLs carry activating mutations of the FLT3 kinase. Unfortunately, single-agent FLT3 inhibitor therapy has met limited clinical efficacy, underscoring a strong rationale for the development of more selective and more potent inhibitors. Here we present the design, synthesis and biological evaluation of a series of biphenyl substituted pyrazoyl-ureas, an underexplored scaffold in medicinal chemistry, as novel FLT3 inhibitors with a putative type II binding mode. Optimized compounds show nanomolar activity against isolated FLT3 (230 nM for compound 10q) and on FLT3-driven cell lines (280 nM and 18 nM for compound 10q against MV4.11 and MOLM-14 cells respectively), with no toxicity against control cell lines, limited metabolism in human microsomes and a reliable SAR; furthermore, profiling of compound 10q against a panel of kinases highlights c-Kit as the only other hit. Overall, we show that the series has a narrow selectivity profile and metabolic stability, and the mode of action of the inhibitors through FLT3 is confirmed by strong suppression of FLT3 and STAT5 phosphorylation.